能

測

定

技

術会議

原子力発電所周辺の環境放射能調査

計画書

2020年度 (令和2年度)

福井県環境放射能測定技術会議

構成機関

福井県安全環境部原子力安全対策課 福井県原子力環境監視センタ 福 井 県 水 産 試 場 式 会 電 株 社 力発 日 本 原 子 関 西 雷 力 株 式 社 国立研究開発法人日本原子力研究開発機構

1	はじ	じめに	•	• • • •		1
2	目的	りと調	查項	目		5
3	調査	計画	Ī ··			8
		第1	表	調査	至地点および測定等の総数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
		第2	表	空間	引放射線量等のモニタリング ····・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
		第3	表	環境	竟試料中の放射性物質のモニタリング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
		第4	表	緊急	急時環境放射線モニタリングの実施に備えた調査 ・・・・・・・・・	27
		第1	図	空間	引線量率連続測定、積算線量測定地点(全域) ······	33
		第2	図	試彩	∤採取地点 ·······	35
		第3	図	緊急	急時用観測局、緊急時モニタリングルート調査地点 ・・・・・・	41
4	測	定	法			43
		第 5	表	空間	引放射線量測定法および測定器 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
		第6	表	浮遊	をじん放射能の連続測定法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
		第7	表	環境	意試料中の放射性物質の測定分析法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
5	測定	を 値の	取扱	支しヽ・		51
<	〈参考	資料	 >			
	参考	斧 資料	ł I		原子力発電所周辺の環境放射線モニタリング ・・・・・・・・・・	53
	参考	斧 資料	∤ II −	- 1	環境中の放射性核種・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56
	参考	斧 資料	∤ II −	- 2	空間放射線 · · · · · · · · · · · · · · · · · · ·	60
	参考	資料	ŀШ		国際放射線防護委員会勧告による放射線防護・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
	参考	斧 資料	ŀIV		軽水型原子力発電所に対する線量目標値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	64

参考資料V	被ばく線量の推定と評価法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
参考資料VI	大気中水分、雨水(降下物)のトリチウムの評価方法	70
参考資料VII	緊急時モニタリングにおける飲料水採取候補地点一覧および調査計画 ・・・	71
参考資料Ⅷ	緊急時モニタリングにおける土壌採取候補地点一覧および調査計画・・・・・	72
参考資料IX	平常時モニタリングの見直し・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	74
<付録>		
付録1	用語の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
付録2	I C R P刊行物 ·······	84
付録3	福井県環境放射能測定技術会議規程	87

1 はじめに

福井県では、原子力施設稼働以前の1969年に福井県環境放射能測定技術会議を設立し、約50年という長期にわたって原子力施設周辺における環境放射線モニタリングを実施してきており、この間に発生した国内外の原子力発電所等事故から得られた教訓に留意しながら、その都度実施計画に反映し、その充実を図ってきた。

平常時モニタリングの目的、実施内容等の基本的な考え方は、旧原子力安全委員会が策定した「環境放射線モニタリング指針(2008年3月原子力安全委員会決定)」において示されていたが、2011年3月に発生した東京電力福島第一原子力発電所事故の経験等を踏まえ、原子力規制委員会は原子力災害対策指針(2012年10月31日)を新たに策定し、平常時モニタリングの基本方針を原子力災害対策指針に位置付けた。また、2018年4月4日には、この方針の下で行う平常時モニタリングの具体的な実施内容を示す資料として、「平常時モニタリングについて(原子力災害対策指針補足参考資料)(以下、「補足参考資料」という。)」が策定された。この補足参考資料では、調査目的と目的ごとの調査範囲や最低限実施すべき調査項目が示されている。

この補足参考資料の策定を契機として、これまで福井県環境放射能測定技術会議が蓄積してきた知見や現在の実施体制を基盤としながら、補足参考資料に照らし合わせて、平常時モニタリング実施内容の見直しを2019年度に行った。これにより、原子力規制委員会が求める緊急事態におけるモニタリングへの移行にも迅速に対応できる体制とし、「原子力施設の周辺住民等の健康と安全を守る」という平常時モニタリングの目的を確実にかつ効率的に達成する。

移行にあたっては、約2年の準備、検討期間を設けており、2021年度から適用していく計画である。2020年度はこの2年目に当たり、新たな調査の準備を進めていく。この間の調査内容の移行については別表に示す。

【別表】原子力災害対策指針補足参考資料とモニタリング計画との対比表

	原一	子力災害対策指	針補足参考資	料			2018年	度のモニタリング	グ内容			2	2019年度、2	020年度のモニ	タリング内容	-	2	021年度以	降のモニタリング	ブ内容(予定))
目的	実施範囲	実施	項目	測定頻度	測定対象	測定対象 (地点数)	実施範囲	測定頻度	測定対象	備考	見直しの方針	測定対象 (地点数)	実施範囲	測定頻度	測定対象	備考	測定対象 (地点数)	実施範囲	測定頻度	測定対象	備考
		空間放射線量率	率	連続	γ核種	空間線量率(97)	30km圏	連続	γ核種		・従来どおり実施	空間線量率(74)*1	10km圏	連続	γ核種		空間線量率(74)*1	10km圏	連続	γ核種	
		(積算線量)		_	_	積算線量(123)	30km圏 +対照	1回/3月	γ核種	京都府2地点含む	・配置の適正化 ・測定方法の変更	積算線量(109)	10km圏	1回/3月	γ核種	広域地区の廃止	積算線量 <u>(27)</u>	10km圏	1回/3月	γ核種	重複地点の廃止 測定方法の変更
				連続採取 1回/月測定	γ核種	浮遊じん(16)	5km圏	連続採取 1回/月 測定	γ核種		対照地区の廃止	浮遊じん <u>(15)</u>	5km圏	連続採取 1回/月 測定	γ核種		浮遊じん <u>(15)</u>	5km圏	連続採取 1回/月 測定	γ核種	
		大気中放射能 濃度	浮遊じん等	連続採取放出	ヨウ素	大気中ヨウ素(7)	対照 5km圏	1回/月 連続採取 1回/月	ヨウ素		・従来どおり実施	大気中ヨウ素(7)	5km圏	連続採取 1回/月	ヨウ素		大気中ヨウ素(7)	5km圏	連続採取 1回/月	ヨウ素	
			_	時測定	_	大気中水分(14)	5km圏	連続採取 1回/月	H-3		・従来どおり実施	大気中水分(14)	5km圏	連続採取 1回/月	H-3		大気中水分(14)	5km圏	連続採取 1回/月	H-3	
周辺住民等の被ばく							+対照 10km圏	測定	γ核種、		・対照地区の廃止	-	+広域	測定	γ 核種、			+広域 10km圏	測定	γ 核種、	
司辺住氏寺の被は 泉量の推定及び評 西	10km圏		葉菜	_		大根(葉)(6)	+対照 10km圏	1回/年	Pu γ核種、		・対象核種の変更 ・対照地区の廃止	大根(葉)(5)	10km圏	1回/年	<u>Sr-90</u> ア核種、	Sr-90は年1回(年間混合計製が対象)	大根(葉)(5)		1回/年	Sr-90 ア核種、	Sr-90は年1回(年間浪
			牛乳	_		原乳(2)	+対照	3回/年	Sr-90 γ核種、		・頻度の変更・対象核種の変更・対照地区の廃止	原乳(1)	10km圏	4回/年	Sr-90	合試料が対象)		10km圏	4回/年	Sr-90	合試料が対象)
			魚	1回/年 or四半期程度	γ核種、 Sr-90	魚(6) (アジ、ボラ等)	5km圏 十対照	2~9回/年	Sr-90、 Pu	全37試料(H30)	頻度の変更対象核種の変更	魚 <u>(5)</u> (アジ等)	<u>5km圏</u>	漁獲期4回	γ核種、 Sr-90		魚(5) (アジ等)	5km圏	漁獲期4回 (原則として)	γ核種、 Sr-90	
		環境試料中放 射能濃度	無脊椎動物			貝(6) (サザエ or アワビ)	5km圏 十対照	1~5回/年	γ核種、 Pu	全22試料(H30)	対照地区の廃止頻度の変更対象生物種の追加対象核種の変更	無脊椎(5) (貝類、 <u>軟体動物</u>)	<u>5km圏</u>	<u>漁獲期4回</u> (原則として)	γ核種	貝類としてサザエ、 アワビ等3回 <u>軟体動物としてタコ等</u> 1回	無脊椎(5) (貝類、軟体動物)	5km圏	漁獲期4回 (原則として)	γ核種、 <u>Sr-90</u>	貝類としてサザエ、 アワビ等3回 軟体動物としてタコ等 1回
			海藻類			海藻類(6) (ワカメ or モズク)	5km圏 +対照	2~5回/年	γ核種、 Pu	全23試料(H30)	対照地区の廃止対象核種の変更	海藻類 <u>(5)</u> (ワカメ、モズク)	<u>5km圏</u>	<u>漁獲期3回</u> (原則として)	γ核種		海藻類(5) (ワカメ、モズク)	5km圏	漁獲期3回 (原則として)	γ核種、 <u>Sr-90</u>	
			(陸水)	_	_	水道水(9)	5km圏 +対照	4回/年	γ核種、 H-3		・対照地区の廃止 ・対象核種の変更	水道水(8)	<u>5km圏</u>	4回/年	γ核種、 H-3		水道水(8)	5km圏	4回/年	γ核種、 Sr-90、 H-3	
			(穀類)	_	_	_	_	_	_		・調査項目の追加	<u>米(4)</u>	10km圏	1回/年	<u>γ核種、</u> Sr-90		米(4)	10km圏	1回/年	γ核種、 Sr-90	
環境における放射 生物質の蓄積状況	10km圏	環境試料中放		1回/年	1回/年	土壌(13)	5km圏 十対照	1~2回/年	γ核種、 Sr-90、 Pu		-調査方法の見直し -頻度の変更	土壌(13)	5km圏 +広域	2回/年* ² (原則として)	γ核種、 Sr-90、 Pu	Sr-90、Pulは2年に1回	土壌(13)	5km圏 +広域	2回/年* ² (原則として)	γ核種、 Sr-90、 Pu	Sr-90、Pulは2年に1回
の把握		射能濃度	海底土	程度 (Cs-137) 連続 ア核種	海底土(32)	5km圏	1~6回/年	γ核種、 Pu		・調査方法の見直し ・頻度の変更	海底土(32)	5km圏	2回/年* ^{2,3} (原則として)	γ核種、 Pu	Puは代表地点み2年に 1回	海底土(32)	5km圏	2回/年* ^{2,3} (原則として)	γ核種、 Pu	Puは代表地点み2年に 1回	
		空間放射線量率	率	連続	γ核種	空間線量率(97)	30km圏	連続	γ核種		・従来どおり実施	空間線量率(40)*4	5km圏	連続	γ核種		空間線量率(40)*4	5km圏	連続	γ核種	
原子力施設からの 予期しない放射性 物質又は放射線の 改出の早期検出及	5km圏	大気中放射能 濃度	浮遊じん	連続	施設起因の 人工核種	浮遊じん(11)	5km圏	連続	β核種 α核種 β/α比		・従来どおり実施	浮遊じん(11)	5km圏	連続	β 核種 α 核種 β / α 比		浮遊じん(11)	5km圏	連続	β 核種 α 核種 β / α 比	
以口の早期快口及 び周辺環境への影 響評価	放水口	排水中放射能	排水	· 水 連続 γ	γ核種	放水口モニタ(10)	放水口	連続	γ核種 (計数値)		・従来どおり実施	放水口モニタ(10)	放水口	連続	γ核種 (計数値)		放水口モニタ(10)	放水口	連続	γ核種 (計数値)	
	放水口	濃度	191-71	连机	7 1久1生	液体廃棄物(9)*5	放水口	バッチ	γ核種		・従来どおり実施	液体廃棄物(9)*5	放水口	バッチ	γ核種		液体廃棄物(9)*5	放水口	バッチ	γ核種	
		空間放射線量率	· · · · · · · · · · · · · · · · · · ·	連続	γ核種	空間線量率(97)	30km圏	連続	γ核種		- 緊急時用線量計の追加	空間線量率(152)	30km圏	連続	γ核種	緊急時用線量計(55)の データ把握	空間線量率(152)	30km圏	連続	γ核種	緊急時用線量計(55)の データ把握
		至间放剂 禄里名	*	_	_	モニタリンク・ルート調査 (119)	30km圏	2回/年	γ核種	12ルート、119地点	・従来どおり実施	モニタリンク [*] ルート調査 <u>(104)</u>	30km圏	2回/年	γ核種		モニタリンク・ル-ト調査 (104)	30km圏	2回/年	γ核種	
			土壌		γ核種、 Sr-90、 Pu	土壌(61)* ⁶	30km圏	1回/6年	γ核種、 Sr-90、 Pu	緊急時候補地点(既調 査地点を除(地点数) 年10地点程度	・調査計画への取り込み	土壌(61)	30km圏	1回/6年	γ核種、 Sr-90、 Pu	緊急時候補地点(既調査地点を除く地点数) 年10地点程度	土壌(61)	30km圏	1回/6年	γ核種、 Sr-90、 Pu	緊急時候補地点(既調査地点を除く地点数) 年10地点程度
			陸水	5年程度で全 域をカバー(以	γ核種、 H-3、Sr-90	河川水(1)	5km圏	4回/年	γ核種 H-3	落合川	・調査地点の見直し ・頻度の変更 ・対象核種の変更	河川水(33)	30km圏	1回/5年	γ核種 <u>Sr-90</u> H-3	緊急時候補地点のうち 水源地	河川水(33)	30km圏	1回/5年	γ核種 Sr-90 H-3	緊急時候補地点のうち 水源地
緊急事態が発生し			海水	降継続)	H-3	海水(15)	5km圏	1~10回/年	H-3		・従来どおり実施	海水(15)	5km圏	2回/年*3 (原則として)	H-3		海水(15)	5km圏	2回/年*3 (原則として)	H-3	
と場合への平常時 からの備え	30km圏	環境試料中放	#小		_	海水(17)	十対照	1~6回/年	γ核種	内6地点は採取のみ	対象核種の変更	海水(17)	+広域	2回/年*3 (原則として)	γ核種	内6地点は採取のみ	海水(17)	+広域	2回/年* ³ (原則として)	γ核種	内6地点は採取のみ
		射能濃度	(降下物)	_	_	降下物(11)	5km圏 十対照	1回/月	γ核種、 Sr-90、 Pu、H-3	Sr、Pulは6地点で、年1 回(年間集合試料が対象)	・従来どおり実施	降下物(11)	5km圏 十広域	1回/月	γ核種、 Sr-90、 Pu、H-3	Sr、Pulは6地点で、年1 回(年間集合試料が対象)	降下物(11)	5km圏 十広域	1回/月	γ核種、 Sr-90、 Pu、H-3	Sr、Pulは6地点で、年1 回(年間集合試料が対象)
				-	_	指標植物 松葉(7)	5km圏 十対照	1~2回/年	γ核種	対照は1回	- 頻度の変更	指標植物 松葉(7)	5km圏 十広域	2回/年	γ核種		指標植物 松葉(7)	5km圏 +広域	2回/年	γ核種	
			(指標生物)	_	_	指標植物 ヨモギ(6)	5km圏 十対照	5~10月 1回/月	γ核種、 Sr-90、 Pu	Sr、Puは年1回(年間集 合試料が対象)	・頻度の変更	指標植物 ヨモギ(6)	5km圏 十広域	3回/年*7	γ核種、 Sr-90、 Pu	Sr、Pulは年1回(年間集 合試料が対象)	指標植物 ヨモギ(6)	5km圏 十広域	3回/年*7	γ核種、 Sr-90、 Pu	Sr、Pulは年1回(年間集 合試料が対象)
				_	_	海産指標生物 ホンダワラ(16)	5km圏 十対照	1~6回/年	γ核種、 Sr-90、	Srlは9地点で、Pulは7地 点で、年1回(年間集合 試料が対象)		海産指標生物 ホンダワラ(15)	5km圏 十広域	2回/年*3 (原則として)	γ核種、 Sr-90、	Sr、Pulは代表地点で、 年1回	海産指標生物 ホンダワラ(15)	5km圏 十広域	2回/年*3 (原則として)	γ核種、 Sr-90、	Sr、Pulは代表地点で、 年1回

表中の略称表記の説明 対照: 対照地区(原子力施設の影響がないと考えられる地区(福井市など)で、比較対照として扱う地区) 7 核種: ガンマ線放出核種 Sr-90: ストロンチウム-90 Pu: ブルトニウム-239+240およびプルトニウム-238 H-3: トリチウム

- *1 補足参考資料の区分に合わせて施設から概ね10km内に位置する地点数を計上したもの。
 *2 従来どおり調査回数を1回とする地点がある。
 *3 事業者が独自の取り組みとして1回以上調査する地点があるため、実際の調査頻度が従来の頻度と同程度となる地点がある。
 *4 補足参考資料の区分に合わせて施設から概ね5km内に位置する地点を計上したもの。
 *5 敦賀は2号の結果のみ報告している。
 *6 調査計画の対象外調査として従来から県が独自に取り組んできたもの。2019年度から調査計画に反映する。
 *7 ヨモギは生育期のみ(第 I ~ II 四半期)採取する。

2 目的と調査項目

(1) 環境放射線モニタリングの目的

福井県内に立地する原子力施設の周辺住民等の健康と安全を守るため、次の具体的な目的の下、環境における放射性物質および放射線の状況を確認し、その結果を周辺住民等に提供する。

① 周辺住民の被ばく線量の推定および評価

原子力施設の周辺住民等の健康と安全を守るため、平常時から、環境における原子力施設起因の放射性物質または放射線による周辺住民等の被ばく線量を推定し、評価する。

② 環境における放射性物質の蓄積状況の把握

原子力施設からの影響の評価に資するため、平常時から、原子力施設の運転により原子力施設から放出された放射性物質の環境における蓄積状況を把握する。

③ 原子力施設からの予期しない放射性物質または放射線の放出の早期検出および周辺環境 への影響評価

原子力施設から敷地外への予期しない放射性物質または放射線の放出を検出することにより、原子力施設の異常の早期発見に資する。

また、原子力施設から予期しない放射性物質または放射線の放出があった場合に、その影響を的確かつ迅速に評価するため、平常時モニタリングの結果を把握しておく。

④ 緊急事態が発生した場合への平常時からの備え

緊急事態が発生した場合に、緊急事態におけるモニタリングへの移行に迅速に対応できるよう、平常時から緊急事態を見据えた環境放射線モニタリングの実施体制(緊急時モニタリングの結果を適切に評価するため、原子力施設の通常運転時の空間放射線量率の水準や大気中および環境試料中の放射能濃度の水準を把握するための体制)を備えておく。

(2)調査項目と調査範囲

上記の目的を達成するため、以下のとおり目的に応じたモニタリングを実施する。

① 周辺住民の被ばく線量の推定および評価を目的とした項目

範囲:原子力施設から概ね10 km

項目:空間放射線量率(連続測定)、積算線量*1、

大気、陸水、農畜産物、海産食品および指標植物*1中の放射能濃度

② 環境における放射性物質の蓄積状況の把握を目的とした項目

範囲:原子力施設から概ね10 km

項目:陸土および海底土中の放射能濃度

*1 被ばく評価を行う際に参考とする。

③ 原子力施設からの予期しない放射性物質または放射線の放出の早期検出および周辺環境 への影響評価を目的とした項目

範囲:原子力施設から概ね 5 km

項目:空間放射線量率(連続測定)、浮遊じんの放射能濃度(連続測定)、

放水口における放射能濃度(連続測定)*2、

陸土、降下物、指標植物、指標海産生物、海水および海底土中の放射能濃度*3

④ 緊急事態が発生した場合への平常時からの備えを目的とした項目*4

範囲:原子力施設から概ね30km

項目:空間放射線量率(連続測定およびモニタリングカーによるルート調査)、

大気、陸土、陸水、降下物、指標植物、指標海産生物、海水および海底土中

の放射能濃度

^{*2} 原子力事業者が原子力施設の各放水口で行う放水口モニタによるモニタリング。

^{*3} 原子力施設から予期しない放出があった場合に周辺環境への影響を的確に評価するために、平常時の状況を把握しておく。

^{*4} 広域における原子力施設の通常運転時の空間放射線量率の水準や大気中および環境試料中の放射能濃度の水準を把握する。

・本調査計画書では、事業者が協定等に基づいて実施している調査や測定を合わせて取り扱 うこととしている。

・本調査計画書では、機関名称を以下のとおり略称で表示している。

福井県原子力環境監視センター : 「県」「福井県」または「A」

日本原子力発電株式会社: 「原電」または「B」関西電力株式会社: 「関電」または「C」

国立研究開発法人日本原子力研究開発機構 : 「原子力機構」「機構」または「D」

・本調査計画書では、調査地区を以下のとおり区分している。

敦賀:敦賀発電所および新型転換炉原型炉ふげんから概ね 10 kmの範囲

白木:高速増殖原型炉もんじゅから概ね10kmの範囲

美浜:美浜発電所から概ね 10 kmの範囲 大飯:大飯発電所から概ね 10 kmの範囲 高浜:高浜発電所から概ね 10 kmの範囲

広域:原子力施設から概ね30kmの範囲(一部に福井市など30km以遠の地点も含む)

3 調査計画

第1表 調査地点および測定等の総数

(イ)空間放射線量および浮遊じんの放射能濃度

測定項目	調査地区	敦賀	白木	美浜	大飯	高浜	広域	合計	頻度 (回/年)
線量率 (観測局)		22	7	13	17	15	23	97	連続
線量率(緊急時用観測局)*	1						55	55	連続
線量率*1 (緊急時モニタリング・ルート調査)	地点数						104	104	2
積算線量	地点数	27	14	19	24	25		109	1
(3ヶ月積算値)	測定数	108	56	76	96	100		436	4
浮遊じん(ダストモニタ)		2	2	2	2	3		11	連続

^{*1} 緊急時用観測局および緊急時モニタリングルート調査は実際の測定地点に関わらず、すべて「広域」として計上している。

(ロ)環境試料中のガンマ線放出核種の放射能濃度

測定項目		調査地区	敦賀	白木	美浜	大飯	高浜	広域	合計	頻度 (回/年)	
大気中ヨウ	素-131	地点数	1	1	1	2	2		7		
(粒子状)		測定数	12	12	12	24	24		84	12	
大気中ヨウ	素-131	地点数	1	1	1	2	2		7	10	
(ガス状)		測定数	12	12	12	24	24		84	12	
河本に /		地点数	4	2	2	3	4		15	10	
浮遊じん		測定数	48	24	24	36	48		180	12	
	水道水	地点数	1	1	2	1	3		8	4	
陸水	水	測定数	4	4	8	4	12		32	4	
性小	水道原水	地点数						7	7	1回/	
	<u> </u>	測定数						7	7	5年程度	
陸土 ^{* 1}		地点数	3	2	2	2	2	12	23	1~2または	
隆土'		測定数	6	4	4	4	4	23	45	1回/5年程度	
	大根または	地点数	1	1	1	1	1		5	1	
	ホウレン草	測定数	1	1	1	1	1		5	1	
農畜産物	精米 ^{*2}	地点数	1		1	1	1		4	1	
}	作	測定数	1		1	1	1		4	1	
	原乳	地点数			1				1	4	
	W140	測定数			4				4		
	ヨモギ	地点数	1	1	1	1	1	1	6	- 3	
指標植物		測定数	3	3	3	3	3	3	18		
10 10 10 10	松葉	地点数	2	1	1	1	1	1	7	2	
	四人	測定数	4	2	2	2	2	2	14		
降下物(雨)	水・ちり)	地点数	2	2	2	2	2	1	11	12	
11 1 1/4 (113/		測定数	24	24	24	24	24	12	132		
年間降下物 ¹	* 3	地点数	2	2	2	2	2	1	11	1	
1 1017 1 10		測定数	2	2	2	2	2	1	11		
海水		地点数	3	2	2	1	2	1	11	$2\sim6$	
,,,,,		測定数	14	8	12	6	12	2	54		
海底土		地点数	7	6	8	4	7		32	$1\sim6$	
	England () See S	測定数	23	12	24	12	21		92		
	魚類 (アジ等)	13 (44)	4	4	4	4	4		20	1~2	
海産食品	無脊椎動物(サ		3	3	3	3	3		15		
無脊椎動物(多		1	1	1	1	1		5			
	海藻類(ワカメ		3	3	3	3	3		15	$1\sim2$	
指標海産生	ホンダワラ	地点数	6	1	2	1	4	1	15	$1\sim6$	
物		測定数	17	6	12	6	16	2	59		
測定数合計 ※1 緊急	├ 巷のチェタリン/		182	125	156	160		52	880		

- *1 緊急時のモニタリングに備えて環境の水準を把握するための調査を含む。
- *2 白木地区は美浜地区と合わせて1地点で採取する。
- *3 同一地点で毎月採取した試料を混ぜ合わせ、年間集合試料として測定する。

(ハ)環境試料中の放射性ストロンチウムの放射能濃度

測定項目	Ē,	周査地区	敦賀	白木	美浜	大飯	高浜	広域	合計	頻度 (回/年)
陸水	水道原水	地点数						7	7	1回/ 5年程度
	1	地点数	1	1	1	1	1	10	15	1回/1年~
连上		測定数	1	1	1	1	1	10	15	5年程度
	大根または	地点数	1	1	1	1	1		5	1
	ホウレン草	測定数	1	1	1	1	1		5	1
農畜産物	精米	地点数	1		1	1	1		4	1
長宙座彻	作	測定数	1		1	1	1		4	1
	原乳* ¹	地点数			1				1	1
	原乳 : 1	測定数			1				1	1
指標植物	ヨモギ ^{*1}	地点数	1	1	1	1	1	1	6	1
1日1示1巴170	344	測定数	1	1	1	1	1	1	6	1
年間降下物	* 1	地点数	1	1	1	1	1	1	6	1
午间降下物		測定数	1	1	1	1	1	1	6	1
海産食品	魚類 (アジ等)		1	1	1	1	1		5	1
指標海産生	ホンダワラ	地点数	1	1	1	1	1	1	6	1
物	ホンダリフ	測定数	1	1	1	1	1	1	6	1
測定数合計			7	6	8	7	7	20	55	

^{*1} 同一地点で複数回採取した試料を混ぜ合わせ、年間集合試料として測定する。

(二)環境試料中のプルトニウムの放射能濃度

測定項目		調査地区	敦賀	白木	美浜	大飯	高浜	広域	合計	頻度 (回/年)
陸土		地点数	1	1	1	1	1	11	16	
)连上		測定数	1	1	1	1	1	11	16	5年程度
指標植物	ヨモギ ^{*1}	地点数	1	1	1	1	1	1	6	1
1日1示1但100	コモヤ	測定数	1	1	1	1	1	1	6	1
年間降下物	* 1	地点数	1	1	1	1	1	1	6	1
午间降下物		測定数	1	1	1	1	1	1	6	1
海底土		地点数	1	1	1	1	1		5	1回/2年
(再)以上		測定数	1	1	1	1	1		5	1四/2平
指標海産生	ホンダワラ	地点数	1	1	1	1	1	1	6	1
物	ベングラブ	測定数	1	1	1	1	1	1	6	1
測定数合計			5	5	5	5	5	14	39	

^{*1} 同一地点で複数回採取した試料を混ぜ合わせ、年間集合試料として測定する。

(ホ)環境試料中のトリチウムの放射能濃度

測定項目		調査地区	敦賀	白木	美浜	大飯	高浜	広域	合計	頻度 (回/年)
	水道水	地点数	1	1	2	1	3		8	4
陸水	水	測定数	4	4	8	4	12		32	4
座小	水道原水	地点数						7	7	1回/
		測定数						7	7	5年程度
大気中水分	((公祖水)	地点数	5	2	2	2	2	1	14	12
八风干水刀	(所述/八)	測定数	60	24	24	24	24	12	168	12
雨水*1		地点数	2	2	2	2	2	1	11	4
的小		測定数	8	8	8	8	8	4	44	4
海水*2		地点数	3	2	3	2	4	1	15	2~10
(世/)\	世 八		18	10	16	10	32	2	88	2.010
測定数合計	+		90	46	56	46	76	25	339	

^{*1 3}ヶ月分の集合試料で分析する。

^{*2} 放水口沖合で採取した試料は、複数の地点の集合試料として測定するため、1つの海域を1地点としている。詳細は第4表($p.20\sim p.21$)を参照。

第2表 空間放射線量等のモニタリング

その1 空間放射線量率および浮遊じんの連続測定

地区	市町	測 定 地 点	線量率	浮遊じん	担当機関	備考
		立石A (八坂神社)	0	0	県	
		浦底A(明神寮下県道脇)	0	0	県	
		敦賀A (福井県敦賀合同庁舎)	0		県	
		東郷A (咸新小学校)	0		県	
		粟野A (黒河小学校)	0		県	
		立石B (集落入口県道脇)	0		原電	
		立石山頂B (山頂付近)	0		原電	
		ふげん北D (北敷地境界付近)	0		原子力機構	
	敦賀市	ふげん西D (西敷地境界付近)	0		原子力機構	
	秋 貝巾	猪ヶ池B(敦賀原子力館下)	0		原電	
敦		水試裏B(水産試験場裏)	0		原電	
賀		浦底B (県道脇・剣神社西)	0		原電	
		色ケ浜B(白山神社)	0		原電	
		縄間D(西浦駐在所横)	0		原子力機構	
		赤崎D(赤崎区民センター)	0		原子力機構	
		五幡 B (東浦公民館)	0		原電	
		阿曽D(東浦体育館)	0		原子力機構	
		杉津B(東浦小中学校下国道脇)	0		原電	
		大良A (道の駅河野)	0		県	
	南越前町	河野A(南越前町役場河野総合事務所)	0		県	
	11110公司11111	板取A(今庄365スキー場)	0		県	
		甲楽城 B (河野小学校前)	0		原電	
		白木A(白木公民館東県道脇)	0	0	県	
		白木峠A(旧道市町境)	0	0	県	
4		白木 I D (北東敷地境界)	0		原子力機構	
日木	白 敦賀市	白木ⅡD(東南東敷地境界)	0		原子力機構	
		白木ⅢD(南南東敷地境界)	0		原子力機構	
		白木IVD(南西敷地境界)	0		原子力機構	
		松ケ崎D(松ヶ崎)	0		原子力機構	

第2表 その1 空間放射線量率および浮遊じんの連続測定 つづき

地区	市町	測 定 地 点	線量率	浮遊じん	担当機関	備考
		丹生A(丹生バス停)	0	0	県	
		竹波A (竹波区内公園)	0	0	県	
		坂尻A(坂尻トンネル東側出口南)	0		県	
		久々子A (美浜町総合体育館)	0		県	
		奥浦C(奥浦公園奥)	0		関電	
		丹生C (丹生診療所)	0		関電	
美浜	美浜町	丹生寮 C (関電丹生寮)	0		関電	
		竹波 C (高那弥神社)	0		関電	
		菅浜C (農業構造改善センター)	0		関電	
		佐田C (美浜東小学校)	0		関電	
		郷市C (美浜町役場)	0		関電	
		早瀬C(水無月神社)	0		関電	
		日向C (日向漁業センター)	0		関電	
		宮留A(袖ヶ浜海水浴場)	0	0	県	
		日角浜A (大島小学校)	0	0	県	
		長井A(地区ゲートボール場横)	0		県	
		佐分利A(きのこの森)	0		県	
	おおい町	宮留C(エルパーク大飯下三叉路)	0		関電	
		日角浜C (旧大島公民館)	0		関電	
		本郷C(おおい町役場)	0		関電	
		鹿野C(佐分利小学校)	0		関電	
大飯		川上C(川上公民館)	0		関電	
L/X		小浜A (小浜市役所)	0		県	
		阿納尻A (内外海小学校)	0		県	
		口名田A(小浜市総合運動場)	0		県	
	1 25 -	遠敷A(福井県若狭合同庁舎)	0		県	
	小浜市	加斗C(加斗小学校)	0		関電	
		小浜C(小浜市営野球場)	0		関電	
		西津C(小浜漁協西津支所)	0		関電	
		堅海C(県栽培漁業センター)	0		関電	
		音海A(旧音海小中学校)	0	0	県	
		小黒飯A(集落北県道脇)	0	0	県	
_,.		神野浦A(気比神社)	0	0	県	
高浜	高高海町	山中A(内浦小中学校)	0		県	
N.		三松A(JR三松駅)	0		県	
		音海C(音海漁港奥)	0		関電	
		田ノ浦C(南東敷地境界)	0		関電	

第2表 その1 空間放射線量率および浮遊じんの連続測定 つづき

地区	市町	測 定 地 点	線量率	浮遊じん	担当機関	備考
		小黒飯C(白浜トンネル北口)	0		関電	
		神野浦 C (集落南西道路脇)	0		関電	
	高浜町	日引C(旧日引小学校)	0		関電	
高	同供判	青郷 C (青郷小学校)	0		関電	
浜		高浜C(高浜小学校)	0		関電	
		和田C(和田小学校)	0		関電	
	舞鶴市	田井C(田井グラウンド)	0		関電	
	夕平 往同 111	夕潮台C(夕潮台公園)	0		関電	
	敦賀市	疋田A (愛発公民館)	0		県	
		白山A(白山小学校)	0		県	
	越前市	白崎A(越前市白崎公園)	0		県	
	处处 月1111	瓜生A (越前市瓜生水と緑公園)	0		県	
		今立A (越前市今立歴史民族資料館)	0		県	
		宇津尾A (広野地区農業集落排水処理施設)	0		県	
		湯尾A(南越消防組合南消防署)	0		県	
	南越前町	南条A(南越前町役場)	0		県	
	荆赵 削叫	古木A (南越前町ふるさと交流センターきらめき)	0		県	
		今庄 B (南越前町役場今庄総合事務所前国境脇)	0		原電	
広域		米ノA (越前南部地区漁業集落排水処理施設)	0		県	
	越前町	織田A(織田中学校)	0		県	
		玉川A (越前町玉川地区集会施設)	0		県	
		越前厨D(城崎小学校脇)	0		原子力機構	
	美浜町	新庄 C (日吉神社)	0		関電	
		三重A(名田庄総合運動場)	0		県	
	おおい町	納田終 A (頭巾山青少年旅行村)	0		県	
		名田庄C(名田庄観光館)	0		関電	
		神子A (若狭町みさき漁村体験施設)	0		県	
		三方C(若狭町役場三方庁舎)	0		関電	
	若狭町	鳥羽A(鳥羽小学校)	0		県	
		熊川A(道の駅若狭熊川宿)	0		県	
		上中C(上中体育館)	0		関電	

【参考】気象観測地点

気象観測装置を設置または併設した観測局一覧

地区				観測月	司 名 称			
治 をカロ	立石A	浦底A	敦賀A	東郷A	粟野Α	縄間D	赤崎D	杉津B
敦賀	大良A	河野A	板取A	甲楽城B				
白木	白木A	白木峠A	松ヶ崎D					
美浜	丹生A	竹波A	坂尻A	久々子A	竹波C*1	郷市C		
十名口	宮留A	日角浜A	長井A	佐分利A	日角浜C	本郷C	小浜A	阿納尻A
大飯	口名田A	小浜C						
高浜	音海A	小黒飯A	神野浦A	山中A	三松A	神野浦C	高浜C*1	夕潮台C*1
	疋田A	新庄C*1	神子A	三方C*1	宇津尾A	湯尾A	南条A	古木A
広域	今庄B	白山Α	白崎A	瓜生A	今立A	米ノA	織田A	玉川A
	越前厨D	三重A	納田終A	名田庄C*1	鳥羽A	熊川A	上中C	

^{*1 :}線量率連続測定地点から幾分離れて気象観測装置が設置されているもの。

気象観測装置が設置されていない局については、次表のように近くの地点で気象観測装置(雨量計と感雨計)が設置されている局等で代用している。

気象観測装置代用局一覧

八多种的双色门	7月 免		
測定地点	代 用 局	測定地点	代用局
ふげん北D 立 石B 立石山頂B		佐 田C 早 瀬C 日 向C	郷市C
ふげん西D	敦賀発電所気象露場	宮留C	日角浜C
猪 ヶ 池B 浦 底B		川 上C 鹿 野C	本郷C
水 試 裏B 色 ヶ 浜B		遠敷A	アメダス小浜観測所 [気象庁] (福井県若狭合同庁舎)
五 幡B	杉津B	加 斗C	
阿曽D	赤崎D	西 津 C 塞 海C	小浜C
自 木ID 自 木IID 自 木IID 自 木IVD	もんじゅ気象露場	田 ノ 浦 C 音 海 C 小 黒 飯 C 日 引 C	神野浦C
奥 浦C 丹 生C 丹 生 寮C 竹 波C	落合川ポンプ場	田 井 C 青 郷 C 高 浜 C 和 田 C	高浜(旧高浜町役場東)
菅 浜C		夕潮 台C	舞鶴(関電舞鶴営業所)

<第2表その1に関する注釈>

2017年度以降に生じた設置地点の状況変化等を以下に示す。

(1) 県(A)

- ① 南条Aは、2017年8月に検出器の交換を行いバックグラウンド値が変化した。
- ② 大良Aは、2017年4月~2018年1月にかけて、工事用の仮設建屋が設置された影響により周辺環境が変化し、地表面からの放射線が遮へいされて線量率が低下した。
- ③ 疋田A、神子A、鳥羽A、遠敷A、南条Aは2020年3月に金属筐体状の観測局からアルミ製固定観測局に移転・建替えを行った。

(2) 関電(C)

- ① 田井Cは、2017 年2月下旬~3月上旬間に田井コミュニティセンターが解体され、周 辺環境が変化した。
- ② 青郷C、高浜C、和田C、田井C、夕潮台Cは、2018年5月~6月にかけて測定装置の 更新を行いバックグラウンド値が変化した。
- ③ 日引Cは、2018年9月に測定装置の更新を行いバックグラウンド値が変化した。

(3)機構(D)

① 松ヶ崎Dは、2014年6月~2018年3月にかけて実施された、原子力災害制圧道路工事 に伴う土砂搬出作業により、周辺環境が変化した。

第2表 その2 積算線量

	表 そり		174	昇商						_,
地区	市町					測定地点*1	測定月	担当機関	*2 測定法	現在の設置状況 となった年月*3
		立		石	A 6	(八坂神社)	$4\sim6, 7\sim9$ $10\sim12, 1\sim3$		TLD	12. 4 \triangle
		立石	īЩī	Į.	В 1	(山頂付近) * ⁴	IJ	原電	ED	15. 7 △
		ふじ	げん₹	<u>5</u>	D 2	(西敷地境界付近)*4	11	原子力機構	RPLD	03. 4
		猪	ケ	池	В 1	(敦賀原子力館下)*4	11	原電	ED	15. 7 △
		原子力館		В	(敦賀原子力館敷地)	11	原電	ED	15. 7 △	
		水產	E試 題	負場	В 2	(水産試験場)	11	原電	ED	15. 7 △
		水	試	裏	В 1	(水産試験場裏)*4	IJ	原電	ED	15. 7 △
		明	神	寮	B 2	(明神寮)	IJ	原電	ED	15. 7 △
		浦		底	A 6	(剣神社)	11	県	TLD	12. 4 \triangle
		色	ケ	浜	A 4	(本隆寺)	11	県	TLD	12. 4 \triangle
		手	1	浦	A 4	(舟幸寺)	11	県	TLD	12. 4 \triangle
	敦賀市	手	1	浦	В 3	(舟幸寺)	"	原電	ED	15. 7 △
敦			沓		В 6	(常福寺)]]	原電	ED	15. 7 ■
賀		常		宮	A 4	(常宮小学校)	11	県	TLD	12. 4 \triangle
		常		宮	В 4	(常宮神社)	11	原電	ED	15. 7 △
		縄		間	В	(宗清寺)	"	原電	ED	15. 7 △
		名		子	В 2	(名子バス停)]]	原電	ED	15. 7 △
		松		島	В 3	(原電松島寮)	"	原電	ED	15. 7 △
		松		栄	В3	(敦賀地方合同庁舎)	11	原電	ED	15. 7 △
		赤		崎	A 4	(赤崎小学校グラウンド)	11	県	TLD	12. 4 \triangle
		阿		曽	A 3	(ふれあい会館)	IJ	県	TLD	12. 4 \triangle
		杉		津	A 5	(東浦小中学校)	11	県	TLD	12. 4 \triangle
		元	比	田	A 6	(集落掲示板横)	IJ	県	TLD	12. 4 \triangle
		扣		河	A 3	(原子力センター)	11	県	TLD	12. 4 \triangle
		沓		見	С	(原子力発電訓練センター)	11	関電	TLD	04. 4
	南越前町	大		谷	A 4	(八幡神社)	"	県	TLD	12. 4 \triangle
	用越削削	大		良	В	(大良集会所)	IJ	原電	ED	15. 7 \triangle

^{*1} 測定担当機関をあらわすアルファベットの後の数字(地点番号)は、設置以来今日までの地点変更や周辺環境変化等の回数をあらわす。これらの地点については、変化時点から現在と比較できる値である。

^{*2} 測定法略称の意味は次のとおり TLD:熱蛍光線量計、RPLD:蛍光ガラス線量計、ED:電子線量計

^{*3} 記号の意味は次のとおり \bigcirc : 地点移動、 \square : 周辺環境変化、 \triangle : 素子更新、

^{■:}周辺環境変化+素子更新、●:地点移動+素子更新、☆:地点移動+環境変化、▲:測定機関変更設置年月は、設置状況の変化に先立ち準備測定が行われている場合は、準備測定開始の時点を示した。

^{*4} 観測局と同一敷地内に併設している。

第2表 その2 積算線量 つづき

地区	市町		涯	则定地点 ^{* 1}	測定月	担当機関	* 2 測定法	現在の設置状況 となった年月*3
		白 木 I	D 2	(北東敷地境界)*4	$4\sim6, 7\sim9$ $10\sim12, 1\sim3$	原子力機構	RPLD	03. 4
		白 木 Ⅱ	D 2	(東南東敷地境界)*4	"	原子力機構	RPLD	03. 4
		白 木 Ⅲ	D 2	(南南東敷地境界)*4	IJ	原子力機構	RPLD	03. 4
		白 木 IV	D 2	(南西敷地境界)*4	IJ	原子力機構	RPLD	03. 4
		松ヶ崎	D 2	(松ヶ崎)*3	IJ	原子力機構	RPLD	03. 4
		白 木	A 6	(白木公民館東県道脇) *4	11	県	TLD	16. 1 \bigcirc
白木	敦賀市	白 木	D 6	(白木公民館東県道脇)	11	原子力機構	RPLD	03. 4
\\\\		白城神社	A 3	(神社鳥居横)	IJ	県	TLD	12. 4 \triangle
		白城神社	D 4	(神社鳥居横)	IJ	原子力機構	RPLD	03. 4
		門ケ崎	D 3		11	原子力機構	RPLD	03. 4
		白木トンネル北	П А 3		11	県	TLD	12. 4 \triangle
		白木トンネル北	∏ D 3		IJ	原子力機構	RPLD	03. 4
		白木トンネル南	П А 3	(渓流水貯水池横)	"	県	TLD	12. 4 \triangle
		もんじゅ寮	D 1	(もんじゅ寮前)	IJ	原子力機構	RPLD	04. 4
		奥浦	С	(奥浦公園奥)*4	IJ	関電	TLD	96. 4
		丹 生	A 5	(中村旅館)	IJ	県	TLD	12. 4 \triangle
		丹 生	С 3	(丹生漁港)	"	関電	TLD	96. 4 ●
		丹生診療所	C 6	(丹生診療所) *4	"	関電	TLD	97. 1 ■
		丹生教育体具	験館A1	(旧丹生小中学校)	IJ	県	TLD	12. 4 \triangle
		丹 生 寮	C 5	(関電丹生寮)*4	IJ	関電	TLD	97. 1 ■
		竹 波	A 6	(竹波区内公園)*4	IJ	県	TLD	15. 4 \circ
		竹 波	C 5	(高那弥神社) *4	IJ	関電	TLD	96. 10 •
24		馬背川	C 2	(ポンプ場)	IJ	関電	TLD	96. 4 \triangle
美浜	美浜町	菅 浜	A 4	(旧菅浜保育所)	IJ	県	TLD	12. 4 \triangle
		菅 浜	C 2	(藤田旅館看板付近)	IJ	関電	TLD	96. 4 \triangle
		けやき台	C 1	(けやき台ハイツ)	IJ	関電	TLD	96. 4 \triangle
		佐 田	A 4	(あおなみ保育園)	IJ	県	TLD	12. 4 \triangle
		坂 尻	C 2	(ゲートボール場脇)	IJ	関電	TLD	96. 4 \triangle
		和 田	A 1	(ふる里交流センター)	IJ	県	TLD	12. 4 \triangle
		郷市	C 6	(美浜町役場) *4	IJ	関電	TLD	97. 1 ■
		久 々 子	C 1	(県園芸試験場)	11	関電	TLD	96. 4 \triangle
		早 瀬	C 5	(水無月神社)*4	"	関電	TLD	97. 7 □
		日 向	C 5	(日向漁業センター) *4	"	関電	TLD	97. 1 ■

^{*1} 測定担当機関をあらわすアルファベットの後の数字(地点番号)は、設置以来今日までの地点変更や周辺環境変化等の回数をあらわす。これらの地点については、変化時点から現在と比較できる値である。

^{*2} 測定法略称の意味は次のとおり TLD:熱蛍光線量計、RPLD:蛍光ガラス線量計、ED:電子線量計

^{*3} 記号の意味は次のとおり \bigcirc : 地点移動、 \square : 周辺環境変化、 \triangle : 素子更新、

^{■:}周辺環境変化+素子更新、●:地点移動+素子更新、☆:地点移動+環境変化、▲:測定機関変更 設置年月は、設置状況の変化に先立ち準備測定が行われている場合は、準備測定開始の時点を示した。

^{*4} 観測局と同一敷地内に併設している。

第2表 その2 積算線量 つづき

地区	市町					測定地点*1	測定月	担当機関	* ² 測定法	現在の設置状況 となった年月*3
		赤	礁	崎	С	(関電あかぐり崎クラブ)	4~6,7~9 10~12,1~3	関電	TLD	04. 4
		宮	留	奥	A 1	(あかぐり海釣公園)	11	県	TLD	12. 4 \triangle
		宮		留	A 8	(宮留区生活改善センター横)	11	県	TLD	14. 4 🗆
		宮		留	С 3	(エルパーク大飯下三叉路)*4	11	関電	TLD	02.10 🔾
		日	角	浜	С 3	(旧大島公民館)*4]]	関電	TLD	02. 10 🔘
	おおい町	西		村	A 3	(常禅寺)]]	県	TLD	12. 4 \triangle
		西		村	C 1	(西村トンネル南口県道脇)	11	関電	TLD	96. 4 \triangle
		犬		見	C 2	(集落手前道端)]]	関電	TLD	96. 4 ■
		本		郷	A 6	(町営住宅サンハイムうらら)]]	県	TLD	16. 4 🔾
		本		郷	C 5	(おおい町役場) *4	11	関電	TLD	04. 7 🗆
		鹿		野	C 5	(佐分利小学校)*4	11	関電	TLD	02.10 🔾
大飯		Ш		上	C 4	(川上公民館) ^{*4}	11	関電	TLD	02. 7 🔾
以		鯉		Ш	A 3	(牛尾神社)	"	県	TLD	12. 4 \triangle
		加		斗	A 6	(加斗小学校)	11	県	TLD	20. 1 🔾
		西		勢	A 3	(民宿つどい前ゲートボール場)	11	県	TLD	12. 4 \triangle
		東		勢	C 1	(旧道脇)	11	関電	TLD	96. 4 \triangle
		小沙	兵市里	予球場	夢 C :	2 (小浜市営野球場) *4]]	関電	TLD	02. 10 🔘
	小浜市	小沙	兵市カ	大原	A 4	(栖雲寺)	11	県	TLD	12. 4 \triangle
	71,4 54 111	若独	夹健原	表福祉	止セン	ターA 3	11	県	TLD	12. 4 \triangle
		西		津	А3	(水産高校)	11	県	TLD	12. 4 \triangle
		西		津	С 3	(小浜漁協西津支所)*4	11	関電	TLD	02.10 🔾
		堅		海	А3	(旧堅海小学校)	11	県	TLD	12. 4 \triangle
		堅		海	С 3	(県栽培漁業センター) *4	11	関電	TLD	02.10 🔾
			泊		C 2	(集落内郵便ポスト付近)	11	関電	TLD	96. 4 \triangle

^{*1} 測定担当機関をあらわすアルファベットの後の数字(地点番号)は、設置以来今日までの地点変更や周辺環境変化等の回数をあらわす。これらの地点については、変化時点から現在と比較できる値である。

- *2 測定法略称の意味は次のとおり TLD:熱蛍光線量計、RPLD:蛍光ガラス線量計、ED:電子線量計
- *3 記号の意味は次のとおり \bigcirc : 地点移動、 \square : 周辺環境変化、 \triangle : 素子更新、
 - ■:周辺環境変化+素子更新、●:地点移動+素子更新、☆:地点移動+環境変化、▲:測定機関変更 設置年月は、設置状況の変化に先立ち準備測定が行われている場合は、準備測定開始の時点を示した。
- *4 観測局と同一敷地内に併設している。

第2表 その2 積算線量 つづき

地区	市町				測定地点*1	測定月	担当機関	* ² 測定法	現在の設置状況 となった年月*3
		音	海	A 5	(児玉旅館)	$4\sim6$, $7\sim9$ $10\sim12$, $1\sim3$	L 県	TLD	20. 4 ☆
		音	海	C 4	(音海漁港奥) *4	11	関電	TLD	99. 1 🔾
		音海県	道	C 2	(日本海港運㈱ 保税上屋入口門付近)	11	関電	TLD	19. 4 🔾
		田ノ	浦	С	(南東敷地境界)*4	IJ	関電	TLD	99. 1
		小 黒	飯	A 4	(寿奎寺裏旧道脇)	IJ	県	TLD	12. 4 \triangle
		小 黒	飯	С3	(白浜トンネル北口) *4	IJ	関電	TLD	99. 1 🔾
		旧神野	小学村	交 A 1		IJ	県	TLD	12. 4 \triangle
		神	野	A 5	(桃源寺)	11	県	TLD	12. 4 \triangle
		神野	浦	C 2	(集落南西道路脇) *4	11	関電	TLD	96. 4 \triangle
		Щ	中	A 4	(内浦小中学校)*4	"	県	TLD	12. 4 \triangle
	高浜町	Щ	中	C 2	(JA若狭内浦出張所)	"	関電	TLD	96. 4 \triangle
高		干	•	A 3	(産霊神社)	"	県	TLD	12. 4 \triangle
浜		日	引	С 3	(旧日引小学校)*4	"	関電	TLD	96. 4 \triangle
		上	瀬	А3	(山神神社)	"	県	TLD	12. 4 \triangle
		六 路	谷	A 4	(ふれあい会館)	"	県	TLD	12. 4 \triangle
		六 路	谷	C 2	(杉森神社横)	"	関電	TLD	96. 4 \triangle
		高	野	С	(旧青郷小学校高野分校)	11	関電	TLD	04. 4
		青	郷	C 2	(青郷小学校) *4	"	関電	TLD	96. 4 \triangle
		東三	松	A 5	(東三松グラウンド)	"	県	TLD	12. 4 \triangle
		東三	松	C 2	(民宿萩の家)	11	関電	TLD	96. 4 \triangle
		高浜町	役場	A 4	(旧高浜町役場前庭)	11	県	TLD	12. 4 \triangle
		高	浜	С	(高浜小学校) *4	11	関電	TLD	99. 1 🔾
		和	田	С 3	(和田小学校) * ⁴	11	関電	TLD	96. 4 \triangle
	舞鶴市	田	井	С 3	(田井グラウンド) * ⁴	11	関電	TLD	99. 1 🔾
	9年15月1	夕 滇	台	C 2	(夕潮台公園) *4	IJ	関電	TLD	96. 4 \triangle

^{*1} 測定担当機関をあらわすアルファベットの後の数字(地点番号)は、設置以来今日までの地点変更や周辺環境変化等の回数をあらわす。これらの地点については、変化時点から現在と比較できる値である。

^{*2} 測定法略称の意味は次のとおり TLD:熱蛍光線量計、RPLD:蛍光ガラス線量計、ED:電子線量計

^{*3} 記号の意味は次のとおり \bigcirc : 地点移動、 \square : 周辺環境変化、 \triangle : 素子更新、

^{■:}周辺環境変化+素子更新、●:地点移動+素子更新、☆:地点移動+環境変化、▲:測定機関変更 設置年月は、設置状況の変化に先立ち準備測定が行われている場合は、準備測定開始の時点を示した。

^{*4} 観測局と同一敷地内に併設している。

<第2表その2に関する注釈>

積算線量は過去5ヶ年の平均値と比較して評価するため、2015年度以降に生じた設置地点の状況変化を以下に示す。

(1) 2015 年度の状況変化

- ① 沓B5は、2015年5月に測定地点周辺の整地に伴い約5m移動し周辺環境が変化したが、 暫定的に従来と同一地点として取扱ってきた。2016年度第1期終了後、周辺環境変化の前 後でデータの有意差検定を行ったところ、データの有意差が認められたため、2015年度第 2四半期から地点番号をひとつ進め、沓B6とした。
- ② 日本原電は2015年度第2期から新しい電子線量計を採用したが、測定結果は過去の平常の範囲内であることから1年間データの蓄積を待って有意差検定を行うものとし、暫定的に従来と同一地点として取扱ってきた。2016年度第2期終了後、更新前後でデータの有意差検定を行ったところ、名子B1でデータの有意差が認められたため、2015年度第2四半期から地点番号をひとつ進め、名子B2とした。

なお、その他の地点ではデータの有意差が認められなかったため、従来と同一地点として取扱った。

- ③ 白木A5は、2016年1月に観測局とともに約30m移転し周辺環境が変化したため、2015年度 第4期から地点番号をひとつ進め、白木A6とした。
- ④ 本郷A5は、2016年2月に測定地点周辺の駐車場整備のため約35m移転し周辺環境が変化したため、2016年度第1期から地点番号をひとつ進め、本郷A6とした。

(2) 2016年度の状況変化

① 田井C3は、2017年2月下旬から3月上旬間に田井コミュニティセンターが解体され周 辺環境が変化したが、過去の平常の範囲内であることから暫定的に従来と同一地点として 取扱ってきた。2017年度第4四半期終了後、周辺環境変化の前後でデータの有意差検定を 行ったところ、データの有意差が認められなかったため、従来と同一地点として取扱った。

(3) 2017 年度の状況変化

① 松ヶ崎D2は、2014年6月~2018年3月の間に原子力災害制圧道路工事に伴う松ヶ崎周辺への土砂搬出作業により周辺環境が変化したが、暫定的に従来と同一地点として取扱ってきた。2018年度第4四半期終了後、周辺環境変化の前後でデータの有意差検定を行ったところ、データの有意差が認められなかったため、従来と同一地点として取扱った。

(4) 2018 年度の状況変化

なし。

(5) 2019 年度の状況変化

- ① 音海県道C1は2019年4月に測定地点周辺工事のため約10m移転し周辺環境が変化したため、2019年度第1期から地点番号をひとつ進め、音海県道C2とした。
- ② 加斗A5は2019年12月に測定地点周辺の整地に伴い約30m移転し周辺環境が変化した ため、2019年度第4四半期から地点番号をひとつ進め加斗A6とした。
- ③ 音海A4は2020年1月に測定地点周辺の工事に伴い周辺環境が変化したため、2020年 度第1四半期から地点番号をひとつ進め音海A5とした。

第3表 環境試料中の放射性物質のモニタリング

その1 陸上試料

試	料の種類	地区	书	采取地点	採取月	γ線 ^{*1}	H-3*2	担当 機関	備考
		±4-710	浦底A	(県テレメ観測局)		\circ		県	
		敦賀	立 石A ^{※3}	(")				県	大気中のガス状
		<u> </u>	白 木A	(")		\circ		県	¹³¹ Iの測定を含
		白木	白木峠A ^{※3}	(")				県	む
		* \(\tilde{x} \).	竹波A	(")	毎月	0		県	大気は活性炭 カートリッジCHC-50
	大気・ 浮遊じん	美浜	丹 生A ^{※3}	(")	(月間連	_		県	により採取す
	11 22 070	大飯	宮留A	(")	続採取)	0		県	る
		八郎	日角浜A	(")		0		県	浮遊じんはガラ ス繊維製長尺ろ
			小黒飯A	(")		0		県	紙HE-40Tで採
		高浜	音 海A ^{※3}	(")		_		県	取する
			神野浦A	(")		0		県	
			立 石B	(原電モニタリング、ステーション)		0		原電	
		敦賀	浦底B	(")		0		原電	
	浮遊じん		色ヶ浜B	(")		0		原電	
		白木	松ケ崎D	(機構モニタリンク゛ステーション)	毎月	0		原子力機構	ガラス繊維製ろ 紙HE-40Tで採
١,		美浜	丹 生	(関電モニタポスト横)	(月間連 続採取) ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○		関電	取する	
大気		大飯	宮 留	(")		0		関電	
		高浜	音 海	(")		0		関電	
		同供	小黒飯	(")		0		関電	
			立 石A	(県テレメ観測局)			\circ	原子力機構	
			猪ケ池B	(原電モニタリングポスト)			\circ	原子力機構	
		敦賀	浦底A	(県テレメ観測局)			\circ	県	
			浦底B	(原電モニタリングステーション)			\circ	原電	
			色ケ浜B	(")			\circ	原電	
		白木	白 木A	(県テレメ観測局)			\circ	県	
	大気中		白木峠A	(")	毎月		\circ	原子力機構	除湿器で凝集
	水分	美浜	竹波A	(")	再月		\circ	県	して採取する
		天妖	竹波	(落合川取水場)			\circ	関電	
		大飯	宮留A	(県テレメ観測局)			0	県	
		/\wx	日角浜	(関電モニタポスト横)			\circ	関電	
		高浜	小黒飯A	(県テレメ観測局)			0	県	
		印伏	神野浦	(関電モニタポスト横)			0	関電	
			福井市原目町	(福井分析管理室)			\circ	県	

^{*1} ガンマ線放出核種の分析

^{*2} トリチウム分析

^{*3} これらの局の浮遊じん試料は毎月採取のみ行い、必要に応じて分析を行う。

第3表 その1 陸上試料 つづき

試	料の種類	地区		採取地点	採取月	γ線 ^{*1}	Sr*2	Pu*3	H-3*4	担当機関	備考		
		古んカロ	油 卢	(水試)	5, 11	0			\circ	県			
		敦賀	浦底	(明神寮)	8, 2	0			0	原電			
		44	<u> </u>	(日本)	5, 11	0			0	県			
		白木	日本	(民家)	8, 2	0			0	原子力機構			
			丹 生	(民家)	5, 11	0			0	県			
		美浜	力 生	(漁協飼料保管解凍施設横)	8, 2	0			0	関電			
		夹供	菅 浜	(菅浜多目的広場)	5, 11	0			0	県	採取場所が 違っても、		
陸	水道水		日供	(自供多日的/広場)	8, 2	0			0	関電	水源が同じ		
水	水坦水	大飯	宮留	(足宏)	5, 11	0			0	県	であれば同 一地点とみ		
		八以	百 田	(民家)	8, 2	0			0	関電	なす		
			古派		音海・	(民家)	5, 11	0			\circ	県	
				小黒飯	(以來)	8, 2	0			\circ	関電		
				高浜	神野浦	(区集会所)	5, 11	0			\circ	県	
		同供	作判佣	(民家)	8, 2	0			\circ	関電			
			日引	(日引漁港)	5, 11	0			\circ	県			
			н Л	(百分為色)	8, 2	0			\circ	関電			
		敦賀	田油町	(猪ヶ池野鳥園)* ⁵	4	0				県			
			Q114.e1	(1917年) 局國)	10	0	\circ			原電			
			浦库	(明神寮) * ⁵	11	0		\circ		県			
			im Æ		4	0				原電			
			敦賀発電	電所北端周辺	8, 2	0				原子力機構			
			白木	(川崎重工事務所) *5	4	0				県			
		白木	口小	(/川剛里工事4分)///	10	0	\circ			原子力機構			
		ПУГ	松ケ崎	* 5 (機構モニムタリングステーション)	11	0				県			
			A / FH	(1)% (1) 4 4 7 / / / / / 4 4 7	4	0		\circ		原子力機構			
			竹 波	(高那弥神社) *5	4	0				県			
		美浜			10	0	\circ			関電	採土器によ		
	陸土	XIX		(関電丹生寮) * ⁵	11	0		0		県	り0~5cmの 土壌を採取		
			74		4	0				関電	する		
			宮 留	*5(県テレメ観測局横)	4	0				県			
		大飯		2117 2 Bandy 2 D.O.	10	0	0			関電			
		,	畑 村	(県道脇) *5	11	0		0		県			
			, , , , ,	(717)2.14417	4	0				関電			
			神野浦	(気比神社) * ⁵	4	0				県			
	_	高浜		() (C 1 1 1 1 1 1 1 1 1	10	0	0			関電			
			小黒飯 (白派	(白浜トンネルト) *5	11	0		0		県	1		
			小黒飯 (白浜トンネル上) *5	4	0				関電				
		広域		原目町(衛環研)	4, 10	0				県			
				也ケ原(奥越高原牧場)	7	\circ	\circ	\circ		県			

^{*1} ガンマ線放出核種の分析

^{*2} 放射性ストロンチウム分析

^{*3} プルトニウム分析

^{*4} トリチウム分析

^{*5} 放射性ストロンチウム分析とプルトニウム分析は地区ごとに2年に1回、交互に実施する。

第3表 その1 陸上試料 つづき

試制	料の種類	地区	採取地点	採取月	γ線 ^{*1}	Sr*2	Pu*3	H-3*4	担当機関	備考
		敦賀	浦底		\circ	0			県	
	大根	白木	白 木		0	0			県	
	(葉) または	美浜	丹 生	11	0	0			県	
	ホウレン草	大飯	長 井		0	0			県	
農畜		高浜	神野		0	0			県	
産		敦賀	沓 見		0	0			県	
物	精米	白木 美浜	菅 浜	10	0	0			県	
		大飯	長 井		0	0			県	
		高浜	東三松		0	0			県	
	原乳*5	美浜	山上	6, 9, 12, 3	0	0			県	
		敦賀	浦底		0	0	\circ		県	
		白木	白 木		0	0	\circ		県	
	ヨモギ*	美浜	竹 波	5, 8, 10	0	\circ	\bigcirc		県	
	5	大飯	日角浜	5, 6, 10	0	0	\circ		県	
		高浜	小黒飯		0	0	\circ		県	
指		広域	福井市原目町		0	0	\circ		県	
標植		敦賀	浦 底 (明神寮)	6, 12	0				原電	
物			敦賀発電所北端周辺	8, 2	\circ				原子力機構	
		白木	白 木 (白木トンネル北口付近)	8, 2	0				"	
	松葉	美浜	丹 生 (奥浦公園入口付近)	6, 12	0				関電	2年葉を採 取する
		大飯	畑 村 (県道脇)	6, 12	0				"	
		高浜	小黒飯 (白浜トンネル上)	6, 12	0				"	
		広域	福井市寮町(農業試験場)	6, 11	0				県	
		敦賀	明神町 (敦賀原子力館)		0	0	0	0	県	
			浦 底 (明神寮)		0			0	原電	
		白木	白 木 (川崎重工事務所)		0	\circ	0	0	県	
		ПЛР	松ケ崎 (機構モニタリングステーション)		0			0	原子力機構	
降	※ 6	美浜	竹 波 (落合川取水場)		0	0	0	0	県	
下	雨水	200	丹 生 (関電丹生寮)	毎月	\circ			0	関電	
17/1	物しちり	大飯	宮 留 (県テレメ観測局)		0	0	0	0	県	
) \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	日角浜 (ヴィラ大島)		0			0	関電	
		高近	小黒飯 (県テレメ観測局)		0	0	0	0	県	
		高浜	小和田 (小和田ポンプ所)	_	0			0	関電	
			福井市原目町(福井分析管理室)		0	\circ	\circ	0	県	

- *1 ガンマ線放出核種の分析
- *2 放射性ストロンチウム分析
- *3 プルトニウム分析
- *4 トリチウム分析
- *5 ストロンチウム分析とプルトニウム分析は年間集合試料を分析に供する。
- *6 ストロンチウム分析とプルトニウム分析は年間集合試料、トリチウム分析は3ヶ月集合試料を分析に供する。また、ガンマ線放出核種の分析は毎月採取した試料に対して行うほか、年間集合試料に対しても行う。

第3表 その2 海洋試料

試料	地区	採取地点	採取月	γ線 ^{*1}	H-3*2	担当機関	備考
			4, 10	0	0	県	
		敦賀発電所2号放水口	5, 8, 11, 2	0	0	原電	
			3		0	原子力機構	
			4, 10	0	0	県	
	/ -	ふげん放水口	8		0	原電	
	敦賀		6, 9, 12, 3	\circ	\circ	原子力機構	
	,	立石沖	8, 2	0		原電	
		敦賀発電所2号放水口沖*3	4, 10	_	_	県	
		敦賀発電所2号・	4, 10		0	県	
		教員発電所 2 方・ ふげん放水口周辺*4	8		0	原電	
			3		0	原子力機構	
		もんじゅ放水口	4, 10	0	0	県	
		070 0 19 33,3,3,5	5, 8, 11, 2	0	0	原子力機構	表層水を採取
	白	白木漁港	8, 2	\circ		原子力機構	する
海	木	もんじゅ放水口沖*3	4, 10			県	放水口周辺 は、複数の地
水		┃ もんじゅ放水口周辺 ^{*5}	4, 10		0	県	点で採取した 試料を混合し て測定試料と
		もんしず汲水口周辺	8, 2		0	原子力機構	
		美浜発電所1,2号放水口	4, 10	0	0	県	する
		天庆九电//1,20/////	5, 8, 11, 2	0	0	関電	
		美浜発電所 3号放水口	4, 10	0	0	県	
	美	关风光电灯 6 7 从 7 日	5, 8, 11, 2	0	0	関電	
	浜	美浜発電所1,2号放水口沖*3	4, 10		_	県	
		美浜発電所 3号放水口沖*3	4, 10	_	—	県	
		美浜発電所放水口周辺 ^{*6}	4, 10		0	県	
		天妖元电////////////////////////////////////	8, 2		0	関電	
		大飯発電所放水口	4, 10	0	0	県	
	+	7 (2) Taj / 1/2//3 (T	5, 8, 11, 2	0	0	関電	
	大飯	髻島(大飯発電所放水口沖)*3	4, 10	—	—	県	
		大飯発電所放水口周辺*5	4, 10		0	県	
		八双兀电川从八口川以	8, 2		\circ	関電	

- *1 ガンマ線放出核種の分析
- *2 トリチウム分析
- *3 採取のみ行い、必要に応じて分析を行う。
- *4 敦賀2号機放水口とふげん放水口(放水軸は同方向)の中間点から放水軸上500mの地点を中心に十時を描き、中心点、放水軸上1,000mおよび中心点から左右500mの4地点で採取する。第2図その1(p.35)を参照4地点で採取した試料は混合試料として分析に供する。
- *5 放水口の放水軸上500mの地点を中心に十字を描き、中心点、放水軸上1,000mおよび中心点から左右500mの 4地点で採取する。第2図その2 (p.36) またはその4 (p.38) を参照 4地点で採取した試料は混合試料として分析に供する。
- *6 美浜1,2号機放水口と美浜3号機放水口のそれぞれの放水軸上500mの地点を中心に十字を描き、中心点、放水軸上1,000mおよび中心点から左右500m(左右1地点は重複)の7地点で採取する。第2図その3(p.37)を参照7地点で採取した試料は混合試料として分析に供する。

第3表 その2 海洋試料 つづき

試料	地区	採取地点	採取月	γ線 ^{*1}	H-3*2	担当機関	備考
			4, 10	0	0	県	
		高浜発電所1,2号放水口	4, 5, 7, 8, 10, 11, 1, 2	○*3	0	関電	
			4, 10	0	0	県	ま 屋 小 と 松 姫
	高	高浜発電所3,4号放水口	4, 5, 7, 8, 10, 11, 1, 2	○*3	0	関電	表層水を採取するが、口周辺は、複数の地点で採取した。試料を混合し
海水	浜	高浜発電所放水口沖	4, 5, 7, 8, 10, 11, 1, 2		0	関電	
		旧内浦港ロブイ (高浜発電所放水口沖)* ⁴	4, 10		_	県	て測定試料とする
		高浜発電所放水口周辺*5	4, 10		0	県	
		向快先电/	8, 2		0	関電	
	広域	福井市小丹生町	4, 10	0	0	県	

- *1 ガンマ線放出核種の分析
- *2 トリチウム分析
- *3 5、8、11,2月に採取した試料の分析を実施する。
- *4 採取のみ行い、必要に応じて分析を行う。
- *5 高浜1,2号機放水口と高浜3,4号放水口の放水軸上の交点(1,2号放水口から約500m地点)を設定、交点から 内浦港から内浦湾への流れに沿って、約500m間隔で2点を設定、1点目から内浦港内の地形を考慮し音海方面 に、2点目から内浦湾内の地形を考慮し西側上部および下部方面にそれぞれ約500m間隔で設定した6地点で 採取する。なお、交点については高浜発電所放水口沖地点と同一とする。第2図その5 (p.39)を参照 6地点で採取した試料は混合試料として分析に供する。

第3表 その2 海洋試料 つづき

試料	地区	採取地点	採取月	γ線 ^{*1}	Pu*2	担当機関	備考
		敦賀発電所1号放水口	10	0		県	
		教質発電所 写放小口	8, 2	0		原電	
		浦底湾口*3	10	0	\circ	県	
		明神崎F	10	0		県	
	计人	立石	10	0		県	
	敦賀	77.71	9, 3	0		原子力機構	
		敦賀発電所2号放水口*3	4, 10	0		県	
		秋 貞 先 电 別	5, 8, 11, 2	0		原電	
		敦賀発電所2号放水口沖	5, 8, 11, 2	0		原電	
		ふげん放水口	10	0		県	
			6, 9, 12, 3	0		原子力機構	
		もんじゅ放水口東	10	0		県	
		門ケ崎	10	0		県	
	白	もんじゅ放水口 ^{*3}	4, 10	0		県	
	木		5, 8, 11, 2	0		原子力機構	
		もんじゅ放水口沖	10	0		県	
		もんじゅ取水口	10	0		県	
		白木漁港*3	8, 2	0	0*4	原子力機構	
		美浜発電所1,2号放水口	4, 10	0		県	
			4, 7, 10, 1	0		関電	
海		美浜発電所1,2号放水口沖	10	0		県	松油田子子が淋じっ
海底		光に水電式の日本小 巾	4, 7, 10, 1	0		関電	採泥器または潜水に より表層を採取する
土	美	美浜発電所3号放水口	4, 7, 10, 1	0		関電	
	浜	美浜発電所3号放水口沖*3	10	0		県県	
		丹生湾中央*3	10 4, 7, 10, 1	0	0	関電	
		丹生湾避難港	10	0		県	
		丹生湾奥	10	0		県	
		美浜発電所取水口	10	0		県	
			4, 10	0		県	
		大飯発電所放水口*3	4, 7, 10, 1	0		関電	
	大	大飯発電所放水口沖	4, 7, 10, 1	0		関電	
	飯	冠者島横	10	0		県	
		西村入江*3	10	0	0	県	
			4, 10	0		県	
		高浜発電所1,2号放水口*3	4, 7, 10, 1	0		関電	
		高浜発電所3,4号放水口	4, 10	0		県	
		同供先电//10,47/////////	4, 7, 10, 1	0		関電	
	高	高浜発電所放水口沖*3	10	0	0	県	
	浜		4, 7, 10, 1	0		関電	
		旧内浦港ロブイ	10	0		県	
		神野浦	10	0		県	
		自井入江	10	0		県	
		音海 マ線放出核種の分析	10	\circ		県	

^{*1} ガンマ線放出核種の分析

^{*2} プルトニウム分析

^{*3} プルトニウム分析は地区ごとに2年に1回、交互に実施する。

^{*4 8}月に採取した試料の分析を実施する。

第3表 その2 海洋試料 つづき

試料の種類		地区	採取地点	採取月	担当機関	γ線 ^{*1}	Sr*2	Pu*3	備考	
		敦賀			県 原電	0	O*4			
	魚類		- 各発電所の周辺 -		原子力機構					
	711	白木		漁獲期	県 原子力機構	0	U			
	アジ スズキ等	美浜 大飯		$1 \sim 2 \square$	県 関電 県 関電	0	\cup			
		高浜			県 関電 県 関電	0	<u> </u>			
		敦賀			県 原電	0	0			
海	無脊椎動物	白木	-		県 原子力機構	0				
産食	サザエ	美浜	名発電所の周辺	漁獲期	県 関電	0				
及品	タコ	大飯	在光电/JV/可及	$1 \sim 2 \square$	県 関電	0				
	ナマコ等	高浜			県 関電	0				
		敦賀			県 原電	0				
	海藻類	白木	1		県 原子力機構	0				
		美浜	各発電所の周辺	漁獲期	県 関電	0				
	ワカメ モズク等	大飯		1~2回	県 関電	0				
		高浜	1		県 関電	0				
		1-3127	明神崎	5	原電	0				
			水島	5, 11	原電	0				
			立石	5	原電	0			*5	
		敦賀	釜谷元川河口	5	原電	0				
			敦賀発電所	5, 11	県	0		O*5		
			2号放水口周辺	5, 8, 11, 2	原電	0	O*5			
				5, 11	県	0				
			ふげん放水口周辺	4, 7, 10, 1	原子力機構	0				
		<i>4</i> 1.	day to defe	5, 11	県	0		O*5		
指		白木	松ケ崎	4, 7, 10, 1	原子力機構	0	O*5			
指標海			美浜発電所	5, 11	県	0)*5	
海産	ホンダワラ	* 次.	1,2号放水口周辺	4, 7, 10, 1	関電	0		* 4 * 4 * 4 * 4 * 4 * 4 * 5 * 5		
生		美浜	美浜発電所	5, 11	県	0				
物			3号放水口周辺	4, 7, 10, 1	関電	0	0*5			
		大飯	大飯発電所放水口周辺	5, 11	県	0		O*5		
		人以	人	4, 7, 10, 1	関電	0	0*5			
			高浜発電所	5, 11	県	0		O*5		
			1,2号放水口周辺	4, 7, 10, 1	関電	\circ	0*5			
		高浜	神野浦	5, 11	県	0				
		1641/2	高浜発電所 3,4号放水口周辺	4, 7, 10, 1	関電	0				
			音 海	4, 7, 10, 1	関電	0				
	ガンラ始せ	広域	福井市小丹生町	4, 10	県	0	\bigcirc^{*5}	\bigcirc^{*5}		

- *1 ガンマ線放出核種の分析
- *2 放射性ストロンチウム分析
- *3 プルトニウム分析
- *4 魚類の放射性ストロンチウム分析は県が担当し、年間1試料を分析する。
- *5 年間1試料を分析する。

第4表 緊急時環境放射線モニタリングの実施に備えた調査

その1 緊急時用観測局における空間放射線量率連続測定

地区	市町	測定地点	担当機関	備考
		殿下小学校	県	
	福井市	越廼公民館	県	
	佃开川	清水西小学校	県	
		清水南小学校	県	
		惜陰小学校	県	
		進徳小学校	県	
		鯖江東小学校	県	
		神明小学校	県	
		鳥羽小学校	県	
	鯖江市	中河小学校	県	
	無子上 []	片上小学校	県	
		立待小学校	県	
	吉川小学校 豊小学校 北中山小学校	吉川小学校	県	
		豊小学校	県	
		県		
		河和田小学校	県	
		武生東小学校	県	
広域		武生西小学校	県	
-30		武生南小学校	県	
		神山小学校	県	
	越前市	吉野小学校	県	
		大虫小学校	県	
		坂口小学校	県	
		北日野小学校	県	
		北新庄小学校	県	
		味真野小学校	県	
		花筐小学校	県	
		南中山小学校	県	
		服間小学校	県	
		朝日小学校	県	
		糸生小学校	県	
	越前町	常磐小学校	県	
		宮崎小学校	県	
		萩野小学校	県	
	池田町	旧池田第三小学校	県	

地区	市町	測定地点	担当機関	備考
		敦賀西小学校	県	
		敦賀南小学校	県	
		敦賀北小学校	県	
	敦賀市	松原小学校	県	
		沓見小学校	県	
		粟野小学校	県	
		粟野南小学校	県	
	美浜町	美浜中学校	県	
		三方B&G体育館	県	
広		明倫小学校	県	
域	若狭町	気山小学校	県	
		梅の里小学校	県	
		瓜生小学校	県	
		野木小学校	県	
		青井第一公園	県	
	旧松永小学校	旧松永小学校	県	
	小浜市	旧国富小学校	県	
	17,保山	今富小学校	県	
		中名田小学校	県	
		旧宮川小学校	県	

第4表 その2 緊急時モニタリングルート調査

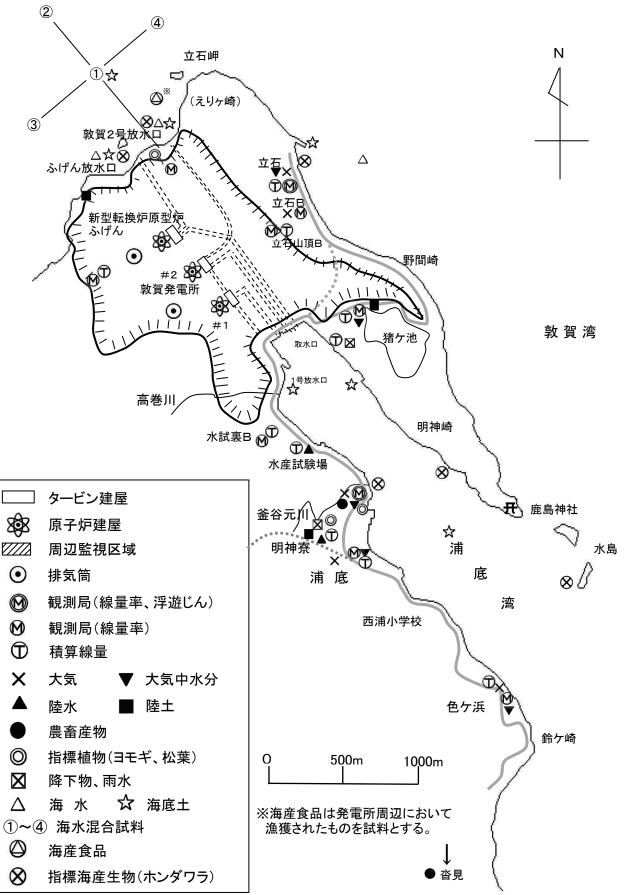
						対象区		
市町村	地点名	詳細地点	調了	調査機関 県機構		美浜	大飯	高浜
鯖江市	上野田	豊幼稚園前・豊小学校グランド横路肩	県	機構	0			
	川島	東陽中学校グランド南・三角広地	県	機構	\circ			
池田町	菅生	旧池田第三小学校グランド横路肩	県	機構	\circ			
越前町	大樟	ローソン越前海岸店海側駐車場看板付近	県	機構	\circ	0		
	下山中	山中児童館前駐車場	県	機構	\circ	\circ		
	下糸生	野田ふる里集落センター駐車場横路側帯	県	機構	0			
	八田	八田集落センター駐車場	県	機構	0	0		
越前市	曽原	曽原町生活センター付近路肩	県	機構	0	\circ		
	丸岡	沓掛バス停前路側帯	県	機構	\circ	0		
	大虫町	大虫町 J Aカントリーエレベータ付近路肩	県	機構	0	0		
	広瀬	神山小学校駐車場中央付近	県	機構	0	0		
	今宿	JR王子保駅駐車場植込付近	県	機構	0	0		
	池泉	味真野小学校校門付近	県	機構	0	0		
	入谷	入谷町集落センター駐車場・防火水そう標識横	県	機構	\circ	0		
	湯谷	坂口公民館裏・エコビレッジ交流センター駐車場	県	原電	0	0		
	中津原	中津原町公民館公園横路肩	県	原電	0	\circ		
南越前町	大谷	国道305号山側駐車帯	県	原電	0	\circ		
	脇本	南条保健福祉センター駐車場中央付近	県	機構	0	0		
	社谷	社谷多目的集会施設駐車場	県	機構	\circ	0		
	大桐	大桐バス停前	県	機構	0	0		
	孫谷	孫谷バス停付近・公衆トイレ付駐車場	県	機構	0	0		
	牧谷	上牧谷区民集落センター駐車場横路側帯	県	機構	\circ	0		
	広野	広野警報局前路肩	県	機構	0	\circ		
	大良桜団地	桜団地集会所横・公園駐車場	県	原電	0	0		
	糠海水浴場	糠海水浴場駐車場中央付近	県	原電	0	\circ		
敦賀市	色浜	西浦小中学校校門	県	原電		0		
	大比田	県道204号駐車帯・集落進入路付近	県	原電	0	0		
	鞠山	鞠山会館前道路路肩	県	原電	0	0		
	敦賀元町	大島公園入口付近路肩		原電		0		
	沓	避難所案内看板付近路肩	県	原電	0	0		
	名子	ファーストハーバーツルガ南・駐車帯	県	原電	0	0		
	松葉町	市立体育館駐車場中央	県	原電	0	0		
	敦賀運動公園西	日本原電沓見駐車場中央	県	原電	0	0		
	沓見公会堂	沓見公会堂前駐車場	県	原電	0	0		
	雨谷	雨谷集落入口路肩不法投棄看板前	県	原電	0	0		
	桜ヶ丘	桜ヶ丘町中央公園グランド西側横	県	原電	0	0		
	新保	新保バス停・転回所中央	県	機構	0	\circ		
	獺河内	旧獺河内バス停前・敦賀市方向車線路肩		機構	\circ	\circ		
	道口	敦賀人材開発センター駐車場		機構	0	0		
	刀根	刀根バス停駐車場	県	機構	0	\circ		
	敦賀池河内	昌福寺近く・池河内集落広地	県	機構	0	\circ		
	敦賀新道	新道バス停付近		機構	0	0		

第4表 その2 緊急時モニタリングルート調査 つづき

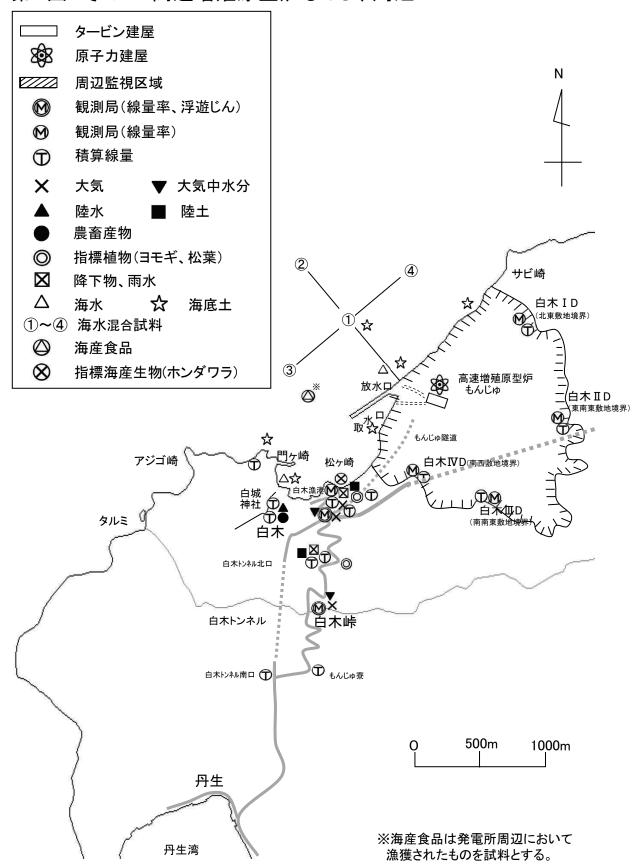
1	14. F 7. 27.6m 14. F				対象区域				
市町村	地点名	詳細地点	調了	上機関	敦賀 •白木	美浜	大飯	高浜	
美浜町	丹生もんじゅ寮	もんじゅ寮入口正面駐車場	県	機構			\circ		
	菅浜ダイヤ浜	ダイヤモンドビーチキャンプ場駐車場付近路肩	県	機構			\circ		
	太田	太田区休憩所(太田バス停横)	県	機構	0	0	0		
	佐田けやき台	関電社宅前バス停付近	県	機構	0	0	0		
	寄戸	龍源院第一駐車場		機構	0	0	0		
	新庄松屋	渓流の里近く・宮橋手前三角地	県	機構	0	0	0		
若狭町	気山	上瀬ふるさと交流センター駐車場	県	関電	0	0	0		
	向笠	縄文の里向笠文化伝承館近く・公園横路肩	県		0	0	0		
	麻生野	麻生野たもの木会館前石碑付近	県	関電		\circ	0		
	杉山	若狭テクノパーク・ゲートボール場駐車場	県	関電		\circ	\circ	\circ	
	井崎	三方診療所駐車場	県	関電	\circ	\circ	\circ		
	下夕中	下タ中交差点出光スタンド裏・下タ中ふれあいセンター横	県	関電		\circ	\circ		
	武生	野木小学校プール横駐車場	県	関電		\circ	\circ	\circ	
	常神	漁協駐車場・バス乗り場と公衆トイレの中間	県	関電	0	\circ	\circ	0	
	遊子	防火水槽横路肩	県	関電	\circ	\circ	\circ	\circ	
	世久見	世久見うみべの家駐車場中央付近	県	関電	\circ	\circ	\circ	\circ	
	若狭田井	JA三方五湖西田支店駐車場道路側	県	関電	\circ	\circ	\circ		
小浜市	泊	泊バス停・転回所付近	県	関電		\circ	\circ	\circ	
	仏谷	漁港駐車場公衆トイレ付近・外灯下	県	関電		\circ	\circ	\circ	
	小浜若狭	土地改良事業記念碑前	県	関電		\circ	\circ	0	
	田烏	旧田烏小学校校門前広地	県	関電	\circ	\circ	\circ	0	
	志積	国道162号沿い・民宿久兵衛看板付近駐車場	県	関電		\circ	\circ	0	
	加尾	宗善寺裏Y字路付近路肩	県	関電		\circ	\circ	0	
	竹長	宮川小学校グランド横路肩	県	関電		\circ	\circ	0	
	平野	国道27号沿い・御食国若狭おばま看板付近路側帯	県	関電		\circ	\circ	0	
	次吉	次吉ふれあい会館バス停付近・国富区駐車場	県	関電		\circ	\circ	0	
	和久里	今富第一保育園・子育て支援センター前駐車場	県	関電		\circ	\circ	0	
	小浜池河内	池河内集落センター・池河内バス停転回場	県	関電			\circ	0	
	神宮寺	森林の水PR館駐車場	県	関電			\circ	0	
	下根来	白石バス停横・駐車場	県	関電			\circ	0	
	甲ヶ崎	内外海郵便局前・反対車線路肩	県	関電		\circ	\circ	0	
	雲浜	ファミリーマート小浜山手店駐車場	県	関電		\circ	\circ	0	
	小浜漁港	水産食品センター若狭小浜お魚センター駐車場	県	関電		\circ	\circ	\circ	
	小浜公園	小浜公園駐車場・休憩所付近	県	関電			0	0	
	青井	青井バス停付近路側帯	県	関電			\circ	\circ	
	西勢	西勢バス停・小浜方向車線側	県	関電			\circ	\circ	
	岡津	ローソン岡津店駐車場・道路側外灯付近	県	関電			\circ	0	
	谷田部	谷田部稲荷前バス停近く路側帯	県	関電			\circ	\circ	
	中井	西広寺近く・第7分団2班消防小屋横	県	関電			\circ	0	
	深谷	若狭河川漁業協同組合前広場	県	関電			0	0	
	深野	ふるさと文化財の森センター駐車場	県	関電			0	0	
	上田	上田ふれあい会館前駐車場・道路寄り	県	関電			0	0	
	小屋	小屋バス停付近・転回所中央	県	関電			0	0	

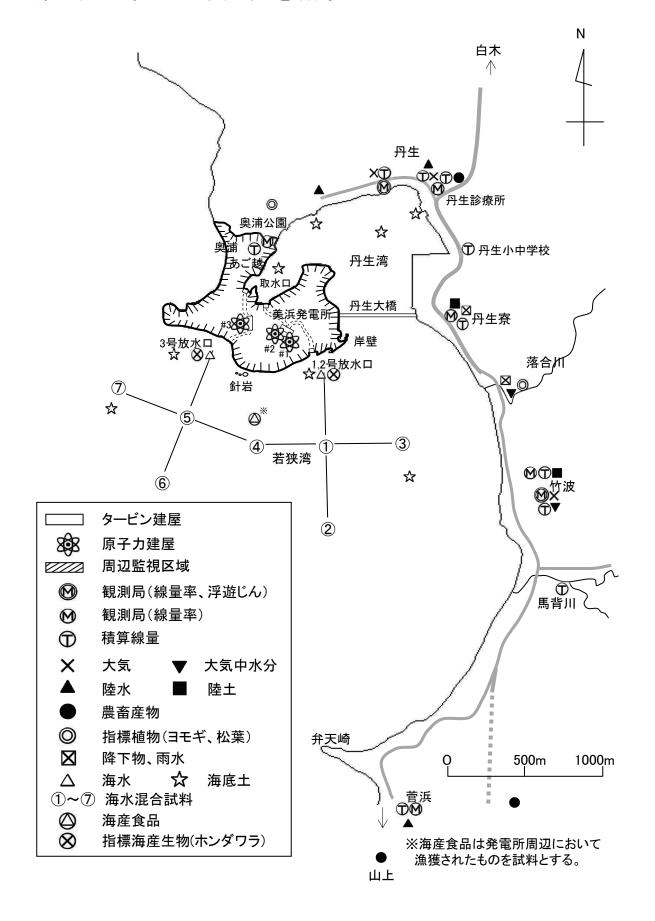

第4表 その2 緊急時モニタリングルート調査 つづき

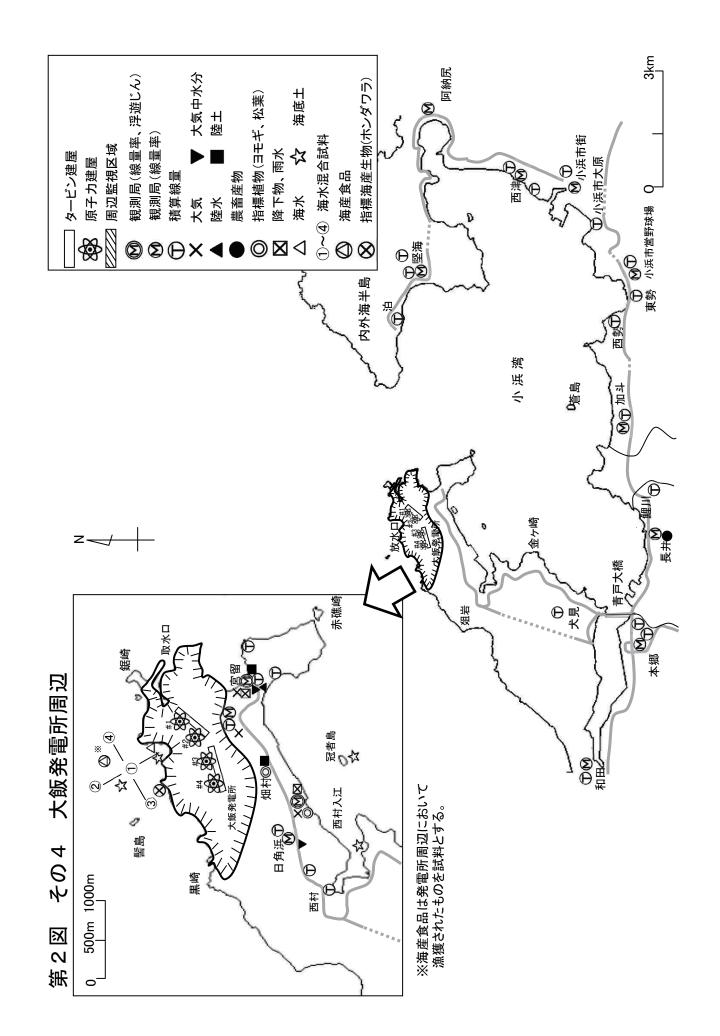
		地点名 詳細地点			対象区域			
市町村	地点名			敦賀 •白木	美浜	大飯	高浜	
おおい町	赤礁崎キャンプ場	赤礁崎オートキャンプ場管理事務所入口付近路肩	県 関電	1			\circ	
	犬見	犬見集落・公園横道路路肩	県 関電	1		0	\circ	
	尾内	ファミリーマート駐車場・交差点側	県 関電			0	\circ	
	名田庄虫鹿野	県道35号沿い小浜方向車線路側帯	県 関電	1		0	\circ	
	名田庄堂本	仁吾谷橋付近・小浜方向車線路肩	県 関電			0	\circ	
	名田庄下	あっとほーむいきいき館駐車場・避難場所看板横	県 関電			0	\circ	
	名田庄口坂本	坂本駐在所前・交差点寄り	県 関電			0	\circ	
	名田庄奥坂本	奥坂本(大滝)看板横	県 関電	1		0	\circ	
	本郷小学校	本郷小学校校舎玄関前	県 関電	1		0	\circ	
	岡田・野尻	おおい町教職員住宅駐車場	県 関電			0	\circ	
	久保・安川	久保・安川バス停・本郷方向車線	県 関電	•		\circ	\circ	
	三森	三森バス停・本郷方向車線	県 関電	1		0	\circ	
	父子・万願寺	さぶり川公園ゲートボール場側駐車場	県 関電			0	\circ	
高浜町	音海内浦港	田ノ浦隧道・音海方向出口付近休憩所	県 関電	•		\circ		
	東三松	中津海交差点海側入る駐車場・速度標識横	県 関電			0		
	下車持	シーサイド高浜・大型車駐車場奥・国道側角	県 関電	1		0	\circ	
	岩神・和田	ローソン高浜町和田浜店駐車場	県 関電			0	\circ	
	坂田	坂田グリーンタウングランド横駐車場	県 関電	1		0		
	六路谷	六路谷検問所付近駐車帯	県 関電			0		


第4表 その3 環境試料中の放射性物質の調査

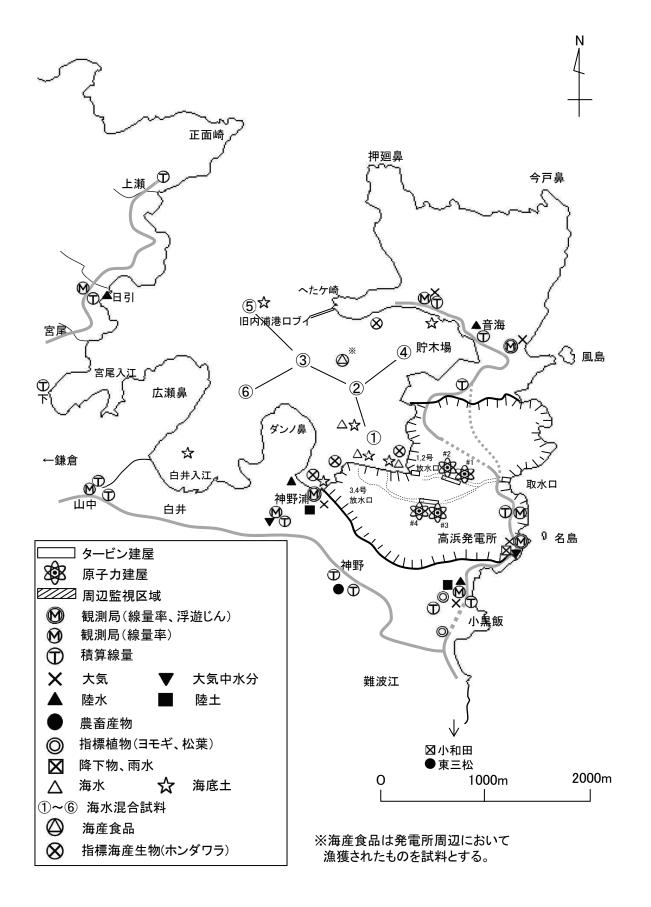
試料	試料の種類		採取地点	採取月	γ線 ^{*1}	Sr*2	Pu*3	H-3*4	担当機関	備考
陸水	水道原水	広域	福井県緊急時モニタリング実施要領に示された緊急時の水道水採取候補地点のうち浄水場等の水源地7地点程度	5~11	0	0		0	県	
陸土		広域	福井県緊急時モニタリング実施要領に示された緊急時の土壌採取候補地点のうち10地点程度	*5 5~11	0	0	0			土壌試料の採取・分析のほか、ガンマ線放出核種の現地測定も実施


- *1 ガンマ線放出核種の分析(ヨウ素131を除く)
- *2 放射性ストロンチウム分析
- *3 プルトニウム分析
- *4 トリチウム分析
- *5 調査予定期間中に1回実施

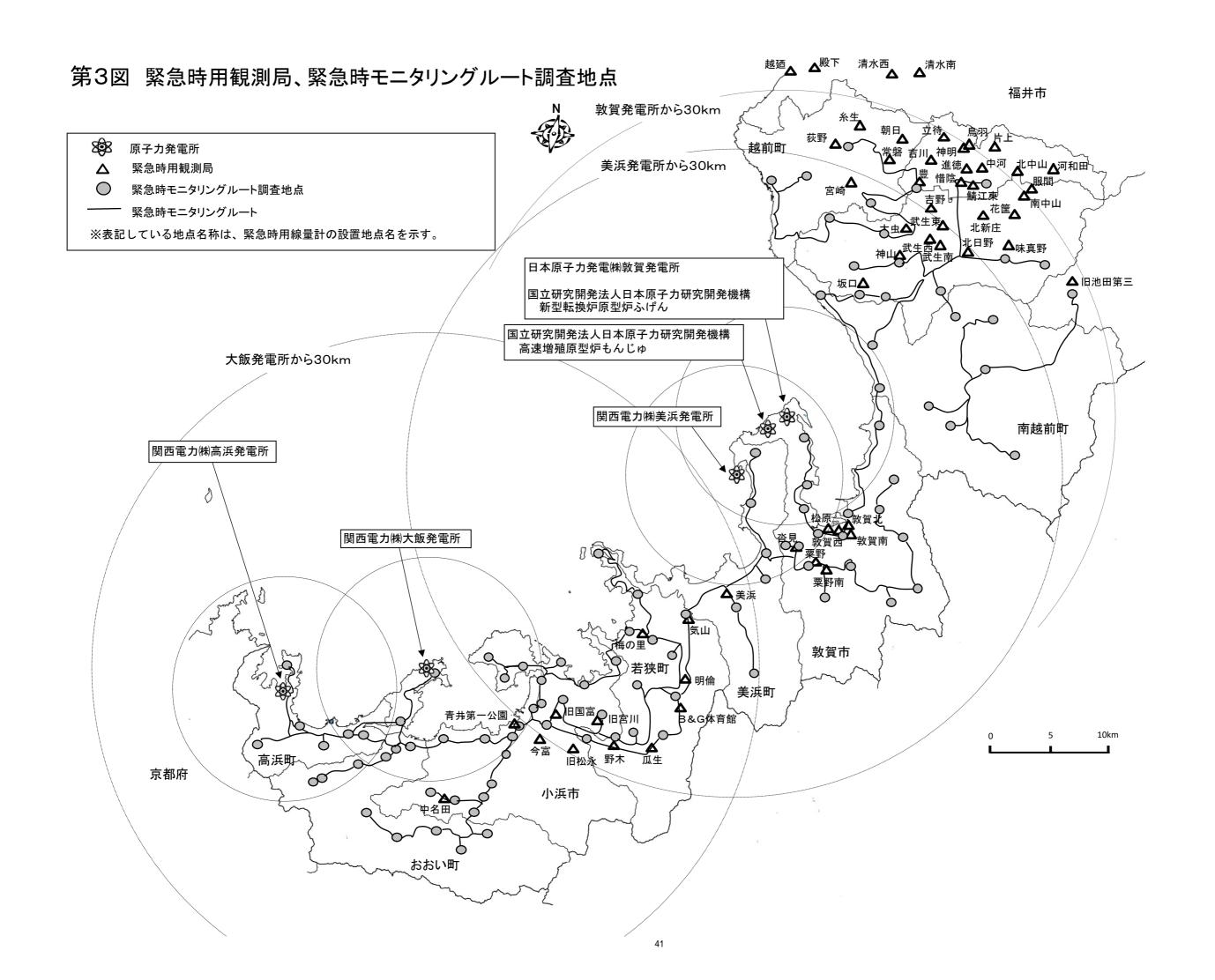

第2図 試料採取地点 その1 敦賀発電所および新型転換炉原型炉ふげん



第2図 その2 高速増殖原型炉もんじゅ周辺



第2図 その3 美浜発電所周辺



第2図 その5 高浜発電所周辺

第2図 その6 広域

4 測定法

各項目の測定分析法は第5表~第7表に示す。また、以下のマニュアル等に準ずる。

空間放射線量率:放射能測定法シリーズNo.17 連続モニタによる環境γ線測定法

(原子力規制庁監視情報課、1982年制定、2017年12月最終改訂)

積算線量: TLD測定マニュアル

(福井県環境放射能測定技術会議 1980 年制定、1996 年 3 月最終改訂) 放射能測定法シリーズ No. 18 熱ルミネセンス線量計を用いた環境 γ 線量測定法

(文部科学省、1982年制定、1990年2月最終改訂)

放射能測定法シリーズ No. 27 蛍光ガラス線量計を用いた環境γ線量測定法 (文部科学省、2002 年 7 月制定)

蛍光ガラス線量計測定マニュアル

(福井県環境放射能測定技術会議 2007年2月制定)

試料の採取・前処理:

放射能測定法シリーズ No. 16 環境試料採取法

(文部科学省、1983年制定)

放射能測定法シリーズ No. 13 ゲルマニウム半導体検出器等を用いる機器 分析のための試料の前処理法

(文部科学省、1982年制定)

放射能測定法シリーズ No. 24 緊急時におけるガンマ線スペクトロメトリーのための試料前処理法

(原子力規制庁監視情報課、1992年制定、2019年4月最終改訂) 月間降下物(水盤法)の前処理法

(福井県環境放射能測定技術会議、1983年3月)

ゲルマニウム半導体検出器によるガンマ線放出核種分析:

放射能測定法シリーズNo.7 ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー

(文部科学省、1976年制定、1992年8月最終改訂)

放射能測定法シリーズNo. 33 ゲルマニウム半導体検出器を用いた in-situ 測定法

(原子力規制庁監視情報課、2008年3月制定、2017年3月最終改訂)

放射性ストロンチウム分析:

放射能測定シリーズ No. 2 放射性ストロンチウム分析法

(文部科学省、1960年制定、2003年7月最終改訂)

放射性ストロンチウム分析法

(福井県環境放射能測定技術会議、1980年4月制定)

プルトニウム分析:

放射能測定シリーズ No. 12 プルトニウム分析法

(文部科学省、1979年制定、1990年11月最終改訂)

トリチウム分析:放射能測定法シリーズ No.9 トリチウム分析法

(文部科学省、1977年制定、2002年7月最終改訂)

第5表 空間放射線量測定法および測定器

	-1. 47.7	冰里侧足仏) - 5 (A) C HE
		発電所 10km圏	測定法 測定器	鉄筋コンクリート製固定観測局屋上の地上高約3.7 mに設置した①NaI(T1)シンチレーション式線量率計(3 MeV 以上はカット)および②電離箱式線量率計を用いて、テレークシステムにより集中監視。 NaI(T1)測定器の校正は ¹³⁷ Cs 10 MBq等線源を用い垂直方向1mで照射して実施。電離箱については ²²⁶ Ra 3.7 MBqを用い、感度確認を実施。 東芝電力放射線テクノサービス ①NaI(T1)測定器: 2″φ×2″, エネルギー・温度補償型, Al 2 mmカバー, FRP 2 mm遮熱ケース付,検出部へ定温送風 ②電離箱: 約14 L球形, Arガス 4気圧, CFRP 1 mmカn゙ー付, 検出部へ定温送風
	県	県 発電所		アルド製固定観測局屋上の地上高約3.5 mに設置した①NaI(T1)シンチレーション式線量率計(3 MeV以上はカット)および②電離箱式線量率計を用いて、テレメータンステムにより集中監視。 測定器の校正は ¹³⁷ Cs 3.7 MBq等線源を用垂直方向1 mで照射して実施。
		10∼30km圏		日立製作所(日立アロカメディカル) ①NaI(T1)測定器: 2"φ×2", エネルギー・温度補償型, AAS3 mmカバー付, 検出部へ定温送風 ②電離箱: 14 L球形, N2+Arガス 4気圧, AAS 3 mmカバー付, 検出部へ定温送風
		広域 (緊急時	測定法	塩化ビニル筐体内の地上高1mに設置した半導体検出器を用いて、テレメータシステムにより集中監視。 測定器の校正は ¹³⁷ Cs 3.7 MBq線源を用い垂直方向185 mmで照射して実施。
		観測地点)	測定器	日立製作所 半導体検出器(NSD4)
	原電	電 敦賀	測定法	軽量気泡コンクリート(屋根は鉄筋コンクリート)製固定観測局屋上の地上高約4.5 mに設置した①NaI(Tl) シンチレーション式線量率計(3 MeV以上はカット)および②電離箱式線量率計を用いて、テレメータンステムにより 集中監視。 NaI(Tl)測定器の校正は ²²⁶ Ra 1.7 MBq等線源を用い垂直方向1 mで照射して実施。
線量率(連続測定)			定器	富士電機 ①NaI(T1)測定器: 2"φ×2", エネルギー・温度補償型, Al 1 mmカバー付, 検出部へ定温送風 ②電離箱: 14 L球形, Ar+N2ガス 8気圧, Al 1 mmカバー付, 検出部へ定温送風
		<i>M</i> . v-	定	鉄筋コンクリート製固定観測局屋上の地上高約3.3 mに設置した①NaI(T1)シンチレーション式線量率計(3 MeV以上はカット)および②電離箱式線量率計を用いて、テレメータシステムにより集中監視。 NaI(T1)測定器の校正は ⁶⁰ Co 5 MBq, ¹³⁷ Cs 10 MBq等線源を用い垂直方向1 mで照射して実施。
		美浜	定器	富士電機 ①NaI(T1)測定器: 2"φ×2", エネルギー・温度補償型, Al 1 mmカバー付, 検出部へ定温送風 ②電離箱: 14.5 L球形, Arガス 780kPa, Al 1 mmカバー付, 検出部へ定温送風
	88 æ	LAG	定	軽量気泡コンクリート製固定観測局屋上の地上高約3.4 mに設置した①NaI(T1)シンチレーション式線量率計(3 MeV以上はカット)および②電離箱式線量率計を用いて、テレメータシステムにより集中監視。 NaI(T1)測定器の校正は ⁶⁰ Co 5 MBq, ¹³⁷ Cs 10 MBq等線源を用い垂直方向1 mで照射して実施。
	関電	大飯	定	富士電機 ①NaI(T1)測定器: 2"φ×2", エネルギー・温度補償型, Al 1 mmカバー付, 検出部へ定温送風 ②電離箱: 14.5 L球形, Arガス 8気圧, Al 1 mmカバー付, 検出部へ定温送風
		高浜	定	軽量気泡コンクリート製固定観測局屋上の地上高約3.5 mに設置した①NaI(T1)シンチレーション式線量率計(3 MeV以上はカット)および②電離箱式線量率計を用いて、テレメータシステムにより集中監視。 NaI(T1)測定器の校正は ⁶⁰ Co 5 MBq, ¹³⁷ Cs 10 MBq等線源を用い垂直方向1 mで照射して実施。
		向 供	測定器	日立製作所 ①NaI(T1)測定器: $2''\phi \times 2''$,エネルギー・温度補償型,ASA 3 mmカバー付,検出部へ定温送風②電離箱: 14 L球形, N_2 +Arガス 4 気圧,ASA 3 mmカバー付,検出部へ定温送風
			定	鉄筋コンクリート製固定観測局で地上高約3.5 mに設置した①NaI(T1)シンチレーション式線量率計(3 MeV以上はカット)および②電離箱式線量率計を用いて、テレメータシステムにより集中監視。 NaI(T1)測定器の校正は ²²⁶ Ra 3.7 MBqの線源を用い垂直方向 1 mで照射して実施
	原子力 機構	子力 敦賀 幾構 白木	定	富士電機 ①NaI(T1)測定器: 2"φ×2"(ふげん西D,ふげん北Dは3"球形), エネルギー・温度補償型, Al 1 mmカバー付,検出部へ定温送風 ②電離箱: 14.5 L球形, Arガス 8気圧(縄間DはAr+N2ガス), Al 1 mmカバー付, 検出部へ定温送風

第5表 空間放射線量測定法および測定器 つづき

	県	車: ミニバン 検出器: 2"	φ×2" NaI(Tl) 検出器位置:屋根(地上高2.1 m)
	原電	車:ワゴン 検出器:2"	φ×2" NaI(Tl) 検出器位置:屋根(地上高2.5 m)
線量率 (モニタリングカー)	関電	車:ワゴン 検出器:2"	φ×2" NaI(T1) 検出器位置:屋根(地上高2.5 m)
	1/11 1 / 1	車:ワゴン 検出器:2"	φ×2" NaI(T1) 検出器位置:屋根(地上高2.5 m)
	機構	車:ワゴン 検出器:2"	φ×2" NaI(T1) 検出器位置:屋根(地上高2.6 m)
	県	測定法	各地点に3本(6素子)の熱ルミネッセンス線量計(TLD)を配備し3ケ月毎の積算線量を測定 測定器の校正は ¹³⁷ Csで約0.2~0.3 mGy照射したTLDを使用
		測定器	パナソニック UD-5160, UD-200S
	原電	測定法	各地点に 1 台の電子線量計を配備し、 3 ケ月毎の積算線量を測定電子式線量計の校正は 137 Csで約 $0.2\sim0.3$ mGy照射して実施電子線量計は 2005 年度より採用しており、 2004 年度第 1 期~ 2004 年度第 4 期まで事前測定を実施した。
1本签约目		測定器	富士電機 NSD4
積算線量	関電	測定法	各地点に3本(6素子)の熱ルミネッセンス線量計(TLD)を配備し3ケ月毎の積算線量を測定 測定器の校正は ¹³⁷ Csで約0.2~0.3 mGy照射したTLDを使用
		測定器	パナソニック UD-512P, UD-5120PGL, UD-200S
	原子力	測定法	各地点に4素子の蛍光ガラス線量計(RPLD)を配備し、3ケ月毎の積算線量を測定 測定器の校正は ¹³⁷ Csで約0.2~0.3 mGy照射したRPLDを使用 蛍光ガラス線量計は2007年度より採用しており、2003年度第1期~2006年度第4期まで事前測 定を実施した。
	機構	測定器	旭テクノグラス FGD-202, FGD-202S, SC-1

第6表 浮遊じん放射能の連続測定法

Ī		HE-40T 長尺ろ紙(90m)を用い毎分約 100L で 3 時間吸引し、ろ紙をステップ送りする。吸引
)Bil	中、ろ紙に吸着した放射能のアルファ(α)線およびベータ(β)線を ZnS 塗布プラスチ
	測 定	ックシンチレーション検出器(有効径 2"φ) を用いて、波形弁別方式により同時測定し、
	法	それぞれの計数値より平衡仮定した3時間平均濃度を求め、 $eta/lpha$ 放射能濃度比を求め
	伝	る。(2015年度機器更新、2016年度より新装置)校正は測定装置集塵面と同一形状の標準
		線源(²⁴¹ Am、 ³⁶ Cl)により実施
I	測定	日立アロカメディカル
1	正	We have a second of the second

是器

|2" o プラスチックシンチレータ、ZnS(Ag)シンチレータ塗布(2015年度機器更新、2016年度より新装置)

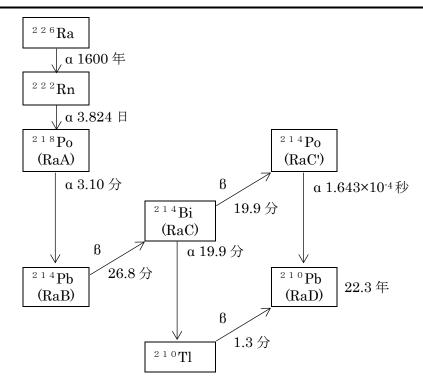


図 1 ラドン(Rn)娘核種崩壊系列

浮遊じん放射能の連続測定において算出している放射能濃度は、ラドンの娘核種 RaA、RaB、RaC、 RaC'、それぞれの比が1:1:1:1と仮定して計算されるラドン娘核種あたりの平衡仮定濃度 である。

$$Q = \frac{\lambda \cdot C \times 10^{3}}{\epsilon \cdot \zeta \cdot \eta \cdot q \cdot F(S,T) \cdot \kappa} \cdot \cdot \cdot (1)$$

: ラドン娘核種濃度(Bg/m³)、 λ : RaA の崩壊定数(sec⁻¹) Q

ε:計数効率、 ζ:発現効率 C: 測定時間中の正味の計数値、 q:捕集流量(L·sec ⁻¹)、 :捕集効率、 κ:補正係数

F(S,T): Batemann の式の解(sec)

:捕集開始から現在までの時間(sec) T:計数開始から現在までの時間(sec)

平衡仮定濃度Qは、 α 計数値、 β 計数値からそれぞれ求められ (Q_A 、 Q_B とする)、 Q_A に対する Q_B の比率 (Q_R/Q_A=R_{BA}) をモニタリングの指標としている。通常では、ほとんどがラドン娘核種によ る計数値であるため、RBAはほぼ一定であるが、発電所の寄与があった場合、放出される核種はほ とんどが β 線放出核種であり、 β 計数値が増えるため、 R_{RA} が上昇する。

空気中のガス状ョウ素-131 に対しては、ろ紙を通過した空気を 50 ℃に加温し、毎分 20 L で CHC-50 (TEDA10%添着活性炭) に通して捕集し、ゲルマニウム測定器でバッチ測定している。

第7表 環境試料中の放射性物質の測定分析法

その1 測定用試料の形態と量

			γ約に	泉 ^{* 1}	Sr*2	Pu*3	H-3*	1
	試	料	試料量	前処理	試料量	試料量	試料量	前処理
	大気中ヨ	ウ素	800 m ³ 程度 (活性炭の全量)	直接	/	/	/	/
	浮遊じん		4000 m ³ 程度 [県] 2000 m ³ 程度 [原電, 関電, 機構] (ろ紙の全量)	直接および 灰化	/	/	/	/
	大気中水	分	/	/	/	/	50 mlまたは 40 ml*5	蒸留
	陸水		10 L	樹脂吸着	100 L	/	/	/
陸	陸土		乾土 300 g程度	乾燥、ふるい掛け 2 mm以下を 測定対象とする	乾土100 g	乾土 20 g または 50 g ^{*6}	/	/
上	農産物 (大根(葉) ホウレン		生 500 g程度	洗浄、乾燥、 粉砕	生 1 kg	/	/	/
	農産物 (精米)		1.5 kg程度	直接	生 1 kg	/	/	/
	原乳		2 L	直接	生 1 L	/	/	/
	指標植物 (ヨモギ)		生 400 g程度	乾燥、粉砕	生 1 kg	生 500 g	/	/
	指標植物 (松葉)		生 400 g程度	乾燥、粉砕	/	/	/	/
	降下物 (雨水、ち	っり)	全量	樹脂吸着	全量	全量	/	/
	雨水		/	/	/	/	50 mlまたは 40 ml*5	蒸留
	海水		20 L	AMP・MnO ₂ 法	/	/	50 mlまたは 40 ml*5	蒸留
	海底土		乾土 300 g程度	乾燥、ふるい掛け 2 mm以下を 測定対象とする	/	乾土 20g または 50g ^{*6}	/	/
海洋		魚類	生 1 kg程度	乾燥、灰化、 粉砕	生 1 kg	/	/	/
1+	海産 食品* ⁷	無脊椎 動物	生 200 g程度	乾燥、灰化、 粉砕	/	/	/	/
		海藻類	生 500 g程度	洗浄、乾燥、 粉砕	/	/	/	/
	指標海産	生物	生 1 kg程度 (除根)	乾燥、粉砕	生 1 kg	生 200 g	/	/

^{*1} ガンマ線放出核種の分析

^{*2} 放射性ストロンチウム分析 (測定用試料は化学的な処理を行った後測定に供する。)

^{*3} プルトニウム分析 (測定用試料は化学的な処理を行った後測定に供する。)

^{*4} トリチウム分析

^{*5} 乳化シンチレータを加えて全量を100 mlとする。試料量として県・原子力機構は50 ml、原電・関電は40 mlを採用している。

^{*6} 試料量として県は20 g、原子力機構は50 gを採用している。

^{*7} 可食部を対象とする。

第7表 その2 測定機器

測定	測定機器		機器の性	能と形式等	
項目	扱りたり及有時	県	原電	関電	機構
y線* ¹	ゲルマニウム半導体 検出器 ^{* 2}	効率:55% GC5019 効率:60% GEM50-83-LB-C-HJ 効率:48% GEM40-76-LB-C-HJ-S 効率:49% GX-4518 効率:56%	効率:35% GEM-30195 効率:31% GEM-30195 効率:35% GEM-30195	効率:34% GEM30-70 効率:35% GEM30-70-S 効率:37% GEM30-70-S 効率:34%	効率:32% GEM-30185 効率:51% GEM-45190 効率:36% GEM30-70-LB-C-HJ 効率:37% GEM30-70-LB-C-HJ
		GC4518 効率:43% GC4020 効率:44% TSP-DX-100T*3		GEM30-70 効率:34% GEM30-70	
Sr*4	低バックグラウンド2π ガスフロー計数装置	効率:26% LBC-4501	<u></u> *5	効率:29% LBC-4201B	*5
21	低バックグラウンドベー タ線スペクトロメータ	ピコベータ	/	/	/
Pu ^{*6}	表面障壁型シリコン 半導体検出器	ENS-U450	/	/	BR-SNA-450-100
H-3* ⁷	液体シンチレーション カウンタ	LSC-LB7	LSC-LB7	LSC-LB5B	LSC-LB7

- *1 ガンマ線放出核種の分析(¹³¹Iを除く)
- *2 効率は1.33 keV (60 Co) においての納品時検査値
- *3 現地測定用検出器
- *4 放射性ストロンチウム分析
- *5 分析は(公財)日本分析センターが行う。
- *6 プルトニウム分析
- *7 トリチウム分析

第7表 その3 測定条件

測定項目	測定時間*1	備考
γ線 ^{*2}	50,000秒	測定容器はプラスチック製小型容器またはマリネリ容器を使用する*3。 採取から測定開始までの目標日数として、 ① ¹³¹ Iを対象とする試料は採取から10日以内とする。 ② ¹³¹ Iを対象としない試料は30日以内とする。 土壌および海底土は測定試料調製後、5日以上の期間を空けて測定する。
	土壌の現地測定は 3,600秒	雨天時は避けて実施する。
Sr*4	3,600秒	
Pu*5	80,000秒	
H-3 ^{*6}	500分 (50分×10回)	

- *1 測定時間の目安を示したものであり、測定目標値に留意して装置の性能や試料の状況に応じて各機関が設定する。
- *2 ガンマ線放出核種の分析 (¹³¹Iを除く)
- *3 標準的な小型容器として、V-1 (ϕ 60mm)、V-2 (ϕ 80mm) 、V-3 (ϕ 90mm) を用いる。
- *4 放射性ストロンチウム分析
- *5 プルトニウム分析
- *6 トリチウム分析

第7表 その4 測定目標値

	括	料	γ線 ^{*1}	¹³¹ I	Sr*2	Pu ^{*3}	H-3	単位
	大気中ヨ	ウ素	/	0.2	/	/	/	${ m mBq/m}^3$
	浮遊じん		0.08	0.2	/	/	/	"
	大気中水	分	/	/	/	/	1	Bq/L
	陸水		8	200	_*4	/	1000	$\mathrm{mBq/L}$
	陸土		3	/	1	0.04	/	Bq/kg乾土
陸上	農産物		0.4	0.2*5	0. 1	/	/	Bq/kg生
	原乳		0.4	0.2	0. 1	/	/	Bq/L
	指標植物	(ヨモギ)	0.4	0.2	0. 1	/	/	Bq/kg生
	指標植物	(松葉)	0.8	2	/	/	/	"
	降下物(雨水、ちり)	0.8	2	/	/	/	$\mathrm{Bq/m}^{2}$
	雨水		/	/	/	/	1	Bq/L
	海水		8	/	/	/	1000	mBq/L
	海底土		3	/	/	/	/	Bq/kg乾土
海洋	海産食品	魚類 無脊椎動物	0.4	/	0. 1	/	/	Bq/kg生
	一	海藻類	0.4	0. 2	0. 1	/	/	IJ
	指標海産	生物	0.4	0.8	0. 1	/	/	II

^{*1} ガンマ線放出核種 (¹³¹Iを除く。対象とする核種は第7表その5を参照)

^{*2} ストロンチウム-90

^{*}3 プルトニウム-239+240およびプルトニウム-238

^{*4} 今後の測定実績を踏まえて設定

^{* 5} 精米を除く

第7表 その5 ガンマ線放出核種の分析における対象核種

	=3.1	lnk4				主な対象	₹核種 ^{*1}				天	然放射	性核種
	可	料	² 2 Na	⁵ ⁴ Mn	^{5 8} Co	^{6 0} Co	^{1 3 4} Cs	^{1 3 7} Cs	^{5 9} Fe	^{1 3 1} I	⁷ Be	4 O K	Th, U系列
	大気□	中ヨウ素								0			
	浮遊	じん	0	0	0	0	0	0		0	0		
	陸水			0	0	0	0	0		O* 3	0		
陸上	陸土			0	0	0	0	0			0	0	0
上	農産物	勿	0	0	0	0	0	0		0	0	0	
	原乳			0	0	0	0	0		0		0	
	指標材	直物	0	0	0	0	0	0		0	\circ	0	
	降下特	勿	0	0	0	0	0	0		0	0		
	海水			0	0	0	0	0	0				
	海底	Ł		0	0	0	0	0			\circ	0	0
海洋	海	魚類	0	0	0	0	0	0			\circ	0	
洋	産食	無脊椎動物	0	0	0	0	0	0			0	0	
	公品	海藻類	0	0	0	0	0	0		0	0	0	
	指標潛	毎産生物	0	0	0	0	0	0		0	0	0	

^{*1} 主な対象核種のほか、チェルノブイリ原子力発電所事故の影響として過去に県内で検出実績のある $^{10.6}$ Ru、 $^{14.4}$ Ceおよび $^{14.0}$ Ba、東京電力福島第一原子力発電所事故の影響として県内で検出実績のある $^{11.0}$ mAgや $^{12.9}$ Teなどのガンマ線放出核種についても検出できる測定条件を設定し、同時に確認している。

^{*2} 宇宙線によって生成する天然放射性核種として環境中に広く存在しており、大飯、高浜および広域地区では天然放射性核種として対象とする。

^{*3} 広域の陸水は131 E対象核種としない。

5 測定値の取扱い

- (1) 空間放射線量率連続測定
 - ① 空間放射線量率は「空気吸収線量率」とし、「nGy/h」で表す。
 - ② 測定値は小数点以下第1位までとし、第2位を四捨五入する。
 - ③ リアルタイムに収集された10分値や1時間値を確認する。収集したデータに対してはシステムによる自動チェックのほか、職員による詳細な確認を行う。
 - ④ 測定結果を確認し、平常の変動幅を超えた場合は、降雨・発雷等の気象状況、近接局の結果、放射線のエネルギー情報等を確認し、変動原因を調査する。
 - ⑤ 平常の変動幅は、各月の「平均値+3×標準偏差」とする。
 - ⑥ 報告書では、測定値から算出した1時間値を報告する。また、調査地点毎に各月の最高値、最低値、平均値および標準偏差を記載し、変動原因を報告するとともに、原子力施設からの影響が確認された場合には、その状況を報告する。
 - ⑦ 変動原因の報告において「降雨」とする条件は基本的に以下の場合とし、気象観測 装置の設置状況等を考慮して総合的に判断する。
 - (a) 雨量計 (0.5 mm 以上) の指示値があった場合、指示開始 1 時間前から指示終了後 2 時間までを「降雨あり」とする。
 - (b) 感雨計の指示があった場合、指示開始から終了後1時間までを「降雨あり」とする。
 - (c) 空間線量率測定地点で気象観測をおこなっていない地点では、近接局の雨量計または感雨計の指示値により「降雨あり/なし」を判断する。

(2) 積算線量測定

- ① 積算線量は「空気吸収線量」を、「mGv/92 日」 単位に換算する。
- ② 測定値は、小数点以下第3位まで表示し、第4位を四捨五入する。
- ③ 測定結果を確認し、平常の変動幅を超えた場合は、周辺環境の変化、降雨・発雷等の気象状況等を確認し、原因を調査する。
- ④ 平常の変動幅は、地点毎に、過去5ヶ年実績から求める「平均値±3×相対標準偏差×平均値」とする。なお、相対標準偏差は、過去の平均的な値である3.5%とする。ただし、自然放射線の変動等でこの平均的な変動範囲を上回る固有の変動幅がある地点(蓄積データが2年に満たない地点を除く)については、地点毎に求めた過去5ヶ年の標準偏差を用いる。

(3) 浮遊じん放射能の連続測定

- ① 浮遊じん放射能は、「ベータ(β)放射能濃度」および「アルファ(α)放射能濃度」並びにこれらから算出した「 β / α 放射能濃度比」を対象とし、濃度は「 Bq/m^3 」、濃度比は「%」で表す。
- ② 測定値は小数点以下第1位まで、濃度比は整数とし、それぞれその次の位を四捨五入する。
- ③ リアルタイムに収集された 10 分値や 3 時間値を確認する。収集したデータに対してはシステムによる自動チェックのほか、職員による詳細な確認を行う。
- ④ 測定結果を確認し、 β / α 放射能濃度比が平常の変動幅を超え、 β 放射能濃度が高いデータについては、風速等の気象状況、近接局の結果、空間線量率等を確認し、変動原因を調査する。
- ⑤ 平常の変動幅は、各月の「平均値+3×標準偏差」とする。
- ⑥ 報告書では、測定のサイクルである3時間値を報告する。また、調査地点毎に各月の最高値、最低値、平均値および標準偏差を記載し、変動原因を報告するとともに、原子力施設等からの影響が確認された場合には、その状況を報告する。

【参考】浮遊じん放射能が天然放射性核種のみの場合、放射能濃度は通常 0.1 ~数 $10 \, \mathrm{Bq/m^3}$ 程度変化するが、 β / α 放射能濃度比はほぼ一定である。一方、主に β 線放出核種である発電所由来の人工放射性核種がこれに加わった場合、 β / α 放射能濃度比は高くなる特徴を持っている。

(4) ゲルマニウム半導体検出器によるガンマ線放出核種分析

- ① 環境試料中の放射性物質の濃度は、放射能濃度「Bq/kg」、「Bq/L または mBq/L」等で表す。
- ② 放射性物質は、放射能濃度がその誤差の3倍以上であるとき「検出」とみなす。
- ③ 測定値は、有効数字2桁または各表示単位の小数点以下第1位までとし、それぞれ次の位を四捨五入する。
- ④ 測定結果を確認し、放射能濃度が平常の変動幅を超えた場合は、周辺環境の変化等を確認し、原因を調査する。なお、各種環境試料中の放射能濃度については、試料の種類によっても、また核種や環境条件によっても異なるため、関連する核種(例えばセシウム-137の場合はセシウム-134)の有無等も考慮し、起源を判断する。
- ⑤ 平常の変動幅は、地点毎に、過去5ケ年実績の最大値とする。

(5) 放射性ストロンチウム分析

- ① 環境試料中の放射性ストロンチウムは「ストロンチウム-90」を対象とし、その濃度は、放射能濃度「Bq/kg」、「Bq/L または mBq/L」等として表す。
- ② ストロンチウム-90は、放射能濃度がその誤差の3倍以上であるとき「検出」とみなす。
- ③ 測定値は、有効数字2桁または各表示単位の小数点以下第1位までとし、それぞれ次の位を四捨五入する。
- ④ 測定結果を確認し、放射能濃度が平常の変動幅を超えた場合は、周辺環境の変化等を確認し、原因を調査する。
- ⑤ 平常の変動幅は、地点毎に、過去5ケ年実績の最大値とする。

(6) プルトニウム分析

- ① 環境試料中の「プルトニウムはプルトニウム-239+240 およびプルトニウム-238」を対象とし、その濃度は、放射能濃度「mBq/kg」として表す。
- ② プルトニウム-239+240 等は、放射能濃度がその誤差の 3 倍以上であるとき「検出」 とみなす。
- ③ 測定値は、有効数字2桁とし、3桁目を四捨五入する。
- ④ 測定結果を確認し、放射能濃度が平常の変動幅を超えた場合は、周辺環境の変化等を確認し、原因を調査する。
- ⑤ 平常の変動幅は、地点毎に、測定開始から現在までの実績の最大値とする。

(7) トリチウム分析

- ① トリチウムの濃度は、放射能濃度「Bq/L」として表す。
- ② トリチウムは、放射能濃度がその誤差の3倍以上であるとき「検出」とみなす。
- ③ 測定値は、有効数字2桁または各表示単位の小数点以下第1位までとし、それぞれ次の位を四捨五入する。
- ④ 測定結果を確認し、放射能濃度が平常の変動幅を超え、発電所の寄与が考えられる場合は、周辺環境の変化等を確認し、原因を調査する。
- ⑤ 平常の変動幅は、地点毎に、過去5ケ年実績の最大値とする。

参考資料

- I 原子力発電所周辺の環境放射線モニタリング
- Ⅱ-1 環境中の放射性核種
- Ⅱ-2 空間放射線
- Ⅲ 国際放射線防護委員会勧告による放射線防護
- IV 軽水型原子力発電所に対する線量目標値
- V 被ばく線量の推定と評価法
- VI 大気中水分、雨水(降下物)のトリチウムの評価方法
- VII 緊急時モニタリングにおける飲料水採取候補地点一覧 および調査計画
- ₩ 緊急時モニタリングにおける土壌採取候補地点一覧 および調査計画
- IX 平常時モニタリングの見直し

付 録

- 付録1 用語の説明
- 付録2 ICRP刊行物
- 付録3 福井県環境放射能測定技術会議規程

原子力発電所周辺の環境放射線モニタリング

原子力発電所から環境へ放出される放射性物質については「核原料物質、核燃料物質及び原子炉の規制に関する法律(原子炉等規制法)」や原子力規制委員会の指針に基づき、放出量および放出濃度が厳しく規制されている。また、施設設置者は、放出の都度、保安規定に定める基準値を下回ることを確認するとともに、国際放射線防護委員会(ICRP)の勧告で示された放射線防護の基本的考え方「被ばく量は合理的に達成できる限り低く抑えるべきである(ALARA:as low as reasonably achievable)」に基づき放出の低減を図っている。

さらに、原子力発電所から放出される放射性物質による周辺環境への影響を確認するため、福井県と施設設置者が「環境放射線モニタリング」を実施している。

「平常時モニタリングについて(原子力災害対策指針補足参考資料)」*では、環境放射線モニタリングを、平常時モニタリング、緊急時モニタリングの3種類に区分している。そのうえで、原子力発電所の操業開始後(緊急事態を除く)に実施する環境放射線モニタリングを平常時モニタリングと位置付け、「原子力施設の平常時の周辺環境における空間線量率及び放射性物質の濃度を把握しておくことにより、緊急時モニタリングに備えておくとともに、原子力施設の異常を早期に検出し、その周辺住民及び周辺環境への影響を評価すること」としている。平常時モニタリングは、具体的に以下に示す目的のもと、実施する。

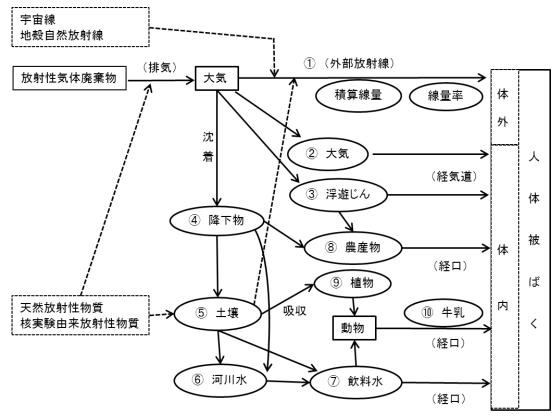
- ① 周辺住民等の被ばく線量の推定および評価
- ② 環境における放射性物質の蓄積状況の把握
- ③ 原子力施設からの予期しない放射性物質又は放射線の放出の早期検出及び周辺環境への影響評価
- ④ 緊急事態が発生した場合への平常時からの備え

平常時モニタリングは、放出された放射性物質の人への被ばく経路を中心に、気象条件、 地形、居住区域などを考慮して、調査地点、調査対象、測定対象核種、測定頻度、測定方法 などを定めたモニタリング計画に基づき調査を行い、原子力発電所の周辺住民等の健康と安 全の確保に万全を期している。

^{*} 平常時モニタリングの目的、実施内容等については、旧原子力安全委員会が策定した「環境放射線モニタリング指針(2008年3月原子力安全委員会決定)」において示されていたが、東電1F事故の経験等を踏まえ、原子力規制委員会が平常時モニタリングの基本方針を原子力災害対策指針に位置付け、この方針の下、平常時モニタリングの具体的な実施内容を示す資料として、2018年4月4日に「平常時モニタリングについて(原子力災害対策指針補足参考資料)」を策定した。

(1) 気体廃棄物の環境モニタリング

原子力発電所より放出される放射性気体廃棄物は、大部分が放射性の希ガス(キセノン、クリプトン)で、揮発性の高いョウ素の放射性同位元素などもわずかな割合で含まれている場合がある。希ガスは吸入しても、人体に吸収されたり蓄積されたりすることはないため、人体に与える影響は主として放射性希ガスからの放射線(ガンマ線)を体外から受けることによるものである。図I-1の内、①の経路がそれに該当する。


環境放射能測定技術会議では、**図I-1**に示したように人体に対する影響の経路および地域性を考慮して、各種の試料の放射能を測定して環境の安全を確認している。

自然には宇宙線などの自然放射線や天然および人工(核実験等)の放射性物質が存在している。従って、測定結果はこれらの自然放射線や天然放射性物質および核実験由来放射性物質の影響と原子力発電所から放出される放射性気体廃棄物の影響を示すことになる。通常の測定値は、大部分が自然放射線や天然放射性物質によるものである。

個々の測定目的は次のとおりである。

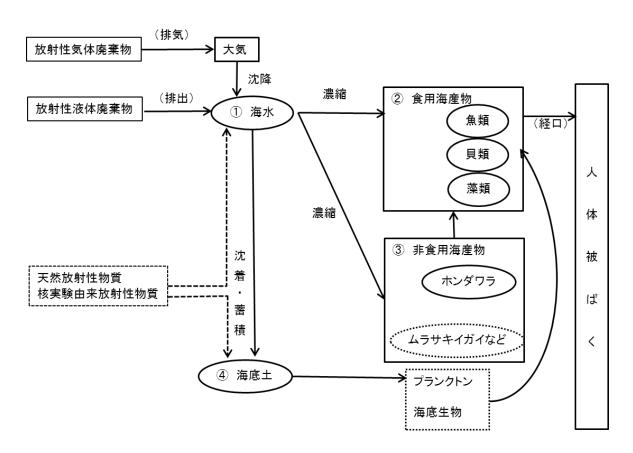
- a) 外部被ばくの評価(外部放射線の状況の確認) · · 空間線量(3ヶ月ごとの積算線量、線量率)
- b) 内部被ばく要因の状況確認・・・・・・・・<経口> 農産物、水道水、牛乳など <経気道> 大気・浮遊じん
- c) 沈着状況の把握・・・・・・・・・・土壌・植物(指標植物;ヨモギ、松葉)、 水盤による降下物測定

※なお、指標植物は、線量評価の際の食品の補完試料としても用いる。

- ① 空間線量(積算線量、線量率)
- ②③ 大気・浮遊じんの放射能
- ④ 降下物(降下じん・雨水)の放射能
- ⑤ 土壌の放射能

- ⑥⑦ 陸水 (河川水、飲料水) の放射能
- ⑧ 農産物 (葉菜等) の放射能
- ⑨ 指標植物(ヨモギ、松葉)の放射能
- ⑩ 牛乳の放射能

図 I - 1 気体放射性物質等による人体被ばくの主経路と測定状況


(2) 液体廃棄物の環境モニタリング

原子力発電所より放出される放射性液体廃棄物には、主として冷却水中の腐食生成物が放射化されたコバルト、マンガン等の放射性物質が含まれる。これらの放射性物質は、主として発電所内で着用した作業衣を洗濯する際に生じるランドリー廃液に含まれ、大量の冷却海水で希釈されて海に放出される。

海水中に放出された放射性物質は海水中に含まれている天然および核実験等による人工の放射性物質とともに、図I-2で示したように海産生物に濃縮されて人に摂取され、放射線被ばくを与える。環境放射能測定技術会議では、図I-2に示した移行過程を考慮した各種試料の放射能を測定して、安全を確認している。

個々の試料の測定目的は次の通りである。

- a) 内部被ばく要因の状況確認・・・・海産食品(魚類・貝類・藻類)
- b)分布状況の把握・・・・・・・・海水・海底土・指標生物
- c)変動傾向の把握・・・・・・・・・・・指標生物(非食用海産生物)

① 海水の放射能

- ③ 指標海産生物(ホンダワラ等)の放射能
- ② 海産食品の放射能(魚類・貝類・藻類)
- ④ 海底土の放射能

図 I - 2 液体放射性物質等による人体被ばくの主経路と測定状況

参考資料Ⅱ-1

環境中の放射性核種

環境中で検出されてきた放射性核種は2種類に大別され、一つは天然に太古から存在、あるいは天 然に常に新しく生じているもので、「天然放射性核種」と呼ばれる。もう一つは、人工的に生成され た放射性核種で「人工放射性核種」と呼ばれ、主要なものは核実験や原子力施設内での核分裂によっ て生成された核分裂生成物や放射化生成物である。以下に、福井県内で検出されてきた天然放射性核 種と人工放射性核種の2種類を紹介する。

1 天然放射性核種

これは更に、3つに分けられる。

(1) ウラン系列、トリウム系列(太古以来の系列天然放射性核種)

地球誕生時から現在まで壊変(巻末付録「用語の説明」参照)しつくさずに存在する親核種の ウラン-238(²³⁸U:半減期45億年)、トリウム-232(²³²Th:140億年)などから始まって、その壊変に よって生れた娘核種が次々と壊変して、 $\mathbf{Z} \mathbf{I} - \mathbf{1}$ 、 $\mathbf{Z} \mathbf{I} - \mathbf{2}$ に示すような系列を作っているもの で、親元素の名前をとってウラン系列、トリウム系列などと呼ぶ。

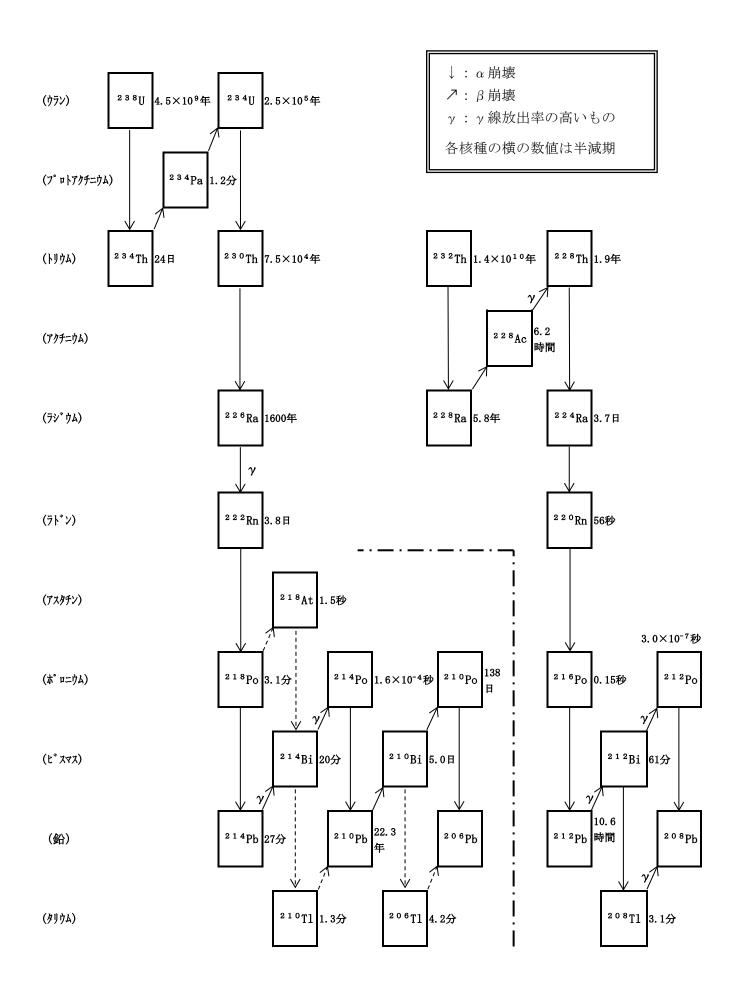
これらの壊変は主に土壌(岩石)の中で行われているが、その系列の途中で気体の核種(ラド ン:Rn) があるので、これらの一部が空気中に出て行く。大気中浮遊じんを採取後、短時間のう ちに測定した場合の測定値は、通常このラドンの娘核種の放射能濃度を表すものとなる。

主な地点の土壌中のウラン系列、トリウム系列等の放射能濃度を表Ⅱ-1に示す。土壌には、 かなりの濃度の天然放射性核種が含まれており、この土壌の影響を受けた各種環境試料中にもこ れらの核種は存在し得る。

敦賀半島先端部の花崗岩地帯は、これら天然放射性核種の放射能濃度が高くなっている。

地区	地 点	カリウム-40	トリウム系列	ウラン系列
敦賀	浦底・明神町・敦賀発電所北端	9 3 0	7 9	4 8
白木	白木(白木・松ケ崎)	1 2 0 0	1 1 0	4 4
美浜	丹生・竹波	1 2 0 0	1 0 0	4 9
大飯	畑村・宮留	3 6 0	2 1	1 8
高浜	小黒飯・神野浦	8 0 0	6 0	4 1
福井	福井市原目町	5 3 0	2 7	1 9

表 II 一 1 土壌中の天然放射性核種放射能濃度の平均値(単位: Bq/kg乾土、 2017年度)


(2) カリウム-40等(太古以来の単独天然放射性核種)

寿命(半減期)が極めて長く、太古以来存在するもので、ウランやトリウムのように壊変によっ て放射性の娘核種を生成しない。従って系列を作らず単独で存在しているもので、カリウム-40 (⁴⁰K:半減期13億年)、ルビジウム-87 (⁸⁷Rb: 475億年) がこの代表的なものである。 1 リットル の海水中にカリウム-40は約 10 ベクレル (Bq) 、ルビジウム-87は約 0.1 Bq存在する。

土壌中には、表Ⅱ-1に示したようなカリウム-40が含まれている。このカリウムそのものは、 動植物の生育に欠かせないものであって、動植物中の放射能の大半はこのカリウム-40によるも のである。体重 60 kgの人では、人体中にカリウム-40が約 4,000 Bq含まれている。

(3) 宇宙線生成核種

宇宙線による原子核反応によって絶え間なく生じている放射性核種で、その代表的なものはト リチウム(³H:半減期12.3年)、ベリリウム-7(⁷Be:53.3日)、ベリリウム-10(¹⁰Be:151万年)、 炭素-14(¹⁴C:5730年)、ナトリウム-22(²²Na:2.60年)である。このうち、トリチウムおよびナ トリウム-22は原子力施設でも生成されるためこの調査計画書の対象核種に加えている。

図Ⅱ-1 ウラン系列

図Ⅱ-2 トリウム系列

トリチウムは、大気圏内核実験によって宇宙線による生成量をはるかに上回る量が大気圏に放出されたが、核実験が行われなくなってから徐々に濃度が減少し、我が国での雨水中のトリチウムの放射能濃度は核実験以前のレベルに戻りつつある。

一方、ナトリウム-22は現在観測されるのは宇宙線により生成されたものであり、降下物を例にとれば、年間平均でおよそ0.4 Bq/㎡の降下量となっており、ベリリウム-7に対するナトリウム-22放射能濃度比は約10,000分の1である。

2 人工放射性核種

(1) 核分裂生成物

ウランやプルトニウムの核分裂などによって生じてくるもので、これまでに大気圏内核実験や原子力発電所等の事故影響により、環境中で検出されてきた。核実験によって生じた核分裂生成物等は、大気の対流圏(高度約15kmまで)あるいは成層圏(高度約15kmから約55kmまで)に入り、その後少しずつ地表へ降下する。1964年をピークとしてその後の降下量は減少した。北半球では、1980年までの中国核実験のものが加わっている。核実験が行われなくなった後でも、セシウム-137(137Cs:半減期30.1年)やストロンチウム-90(90Sr:28.8年)などがわずかに検出される。

1986年のソ連チェルノブイリ発電所事故の際には、セシウム-134 (134 Cs: 2.07年)、セシウム-137、ルテニウム-103 (103 Ru: 39.3日)、ルテニウム-106 (106 Ru: 374日)、セリウム-144 (144 Ce: 284日)、バリウム-140 (140 Ba: 12.8日)、ヨウ素-131 (131 I: 8.02日)の降下量が増加し、ストロンチウム-90降下量にもわずかな増加が認められた。チェルノブイリ発電所事故によって放出されたこれらの放射性核種は対流圏を拡散し短期間に降下して、一時的に検出されたものに過ぎなかった。これら以外の放射性核種については、チェルノブイリ事故の影響による増加はほとんど観測されなかった。

一方、2011年に発生した東北地方太平洋沖地震に伴う福島第一原子力発電所事故の影響により、福井県内においてもセシウム-137、セシウム-134、セシウム-136、ヨウ素-131、銀-110m、テルル-129、テルル-129mが検出されたが、その影響はチェルノブイリ事故時のレベル以下であった。

長寿命核種

ストロンチウム-90、セシウム-137、プルトニウム-239(239 Pu: 半減期24,100年)、トリチウムなどは半減期が長いので環境中に長く存在し、調査対象として主要な核種である。プルトニウムにはプルトニウム-238(238 Pu: 87.7年)もあり、核実験等の影響の場合、プルトニウム-238/プルトニウム-239比はおよそ3%前後であることから、双方を測定することで発電所由来かどうかを判断できる。

② 中寿命核種

セリウム-144(144 Ce: 半減期284日)、ルテニウム-106(106 Ru: 374日)、ジルコニウム-95(95 Zr: 64.0日)、ストロンチウム-89(89 Sr: 50.5日)などは核実験が行われないときは環境から徐々に減少するが、かなり長い期間(2 Ce年)環境に存在する。ほかに、中寿命の核種として代表的なものにセシウム-134*(134 Cs: 半減期2.06年)がある。

③ 短寿命核種

核実験直後の降下物には強い放射能が含まれることがあるが、これらの大部分は短期間のうちに消滅する。これらはモリブデン-99 (99 Mo: 半減期65.9時間)、ルテニウム-103 (103 Ru: 39.3日)、ヨウ素-131 (131 I: 8.02日)、 テルル-132 (132 Te: 3.20日)、 ヨウ素-132 (132 I: 2.30時間)、バリウム-140 (140 Ba: 12.8日)、ランタン-140 (140 La: 1.68日)、セリウム-141 (141 Ce: 32.5日)などである。

*セシウム-134・・・直接の核分裂では生成しない。原子炉での運転によって生成する核分裂生成物キセノン-133 (133 Xe:5.25日) が β 崩壊して放射性のない、安定なセシウム-133 (133 Cs) となる。このセシウム-133が中性子を 1 個捕獲することによりセシウム-134が生成する。よって、セシウム-134は核分裂生成物とは言われないが、本書では中寿命核種の代表的な人工放射性核種としている。

(2) 放射化生成物

核兵器や、原子力発電所の材料中の金属等が中性子を捕獲して放射性になったものである。主なものに、マンガン-54 (54 Mn: 半減期 312 日)、コバルト-58 (58 Co: 70.8日)、コバルト-60 (60 Co: 5.27年) などがある。

1976年の第19回中国核実験、1977年の第22回中国核実験ではマンガン-54、コバルト-58が、1980年の第26回中国核実験ではマンガン-54がかなり降下した。コバルト-60は核実験直後でも極端な増加は認められなかった。(通常の測定では検出されないが、より低いレベルまで検出できる放射化学分析により、陸土や海底土などから極微量検出されていた。)

参考資料Ⅱ-2

空間放射線

空間放射線の大部分は、

- (1) 宇宙線
- (2) 地殻からの自然放射線

で構成されており、これら以外の大気中のラドン娘核種からの放射線などの寄与は、最大10nGy/hと、はるかに少ない。

1. 宇宙線

宇宙を起源としている宇宙線は緯度や高度によってその量が異なるが、世界全体の年間平均線量は、0.39~mSv(45~nGv/h)である*。

2. 地殻からの自然放射線

地殻からの放射線は、大部分が土壌中に含まれている天然放射性核種からのガンマ (γ)線によるものである。

天然放射性核種のうち、ウラン系列、トリウム系列の中には鉛-214 (214 Pb) 、ビスマス-214 (214 Bi) やアクチニウム-228 (228 Ac) 、鉛-212 (212 Pb) などのガンマ線放出率の高い核種があり、**参考資料 II - 1** の図 II - 1 および図 II - 2 の中で [γ] の記号を付した核種が主なものであって、これらの核種とカリウム-40 (40 K) が地殻からの放射線源となっている。

土壌中のウラン系列、トリウム系列、カリウム-40の放射能濃度は**参考資料Ⅱ-1**の表**Ⅱ-1**に 示したが、敦賀半島先端部の花崗岩地帯では天然放射性核種の放射能濃度が高いため、地殻からの ガンマ線量も高くなっている。

テレメータシステムによる観測では、大飯、高浜地区のガンマ線線量率が30~50 nGy/hなのに対し、敦賀半島先端部では90 nGy/hにもなる所がある。このように場所によって土壌中の天然放射性核種の放射能濃度が異なり、しかも地点毎に崖や建物などの周辺状況が違うので、空間線量は測定地点毎にかなり異なる。

しかし、トリウム系列、ウラン系列、カリウム-40からの寄与の割合は地点が違ってもあまり変わらず、地殻からの放射線全体に対する割合は、それぞれ約40%、20%、40%でほぼ一定である。

これら天然の放射線源のほかに、過去の数々の核実験の影響を受けて地表面に蓄積しているセシウム-137 (137 Cs) からの放射線がある。腐食質に富む土壌で混ぜかえされていないところでは、セシウム-137が200~400 Bq/kg乾土と極く表層に高い割合で蓄積している場合がある。それらからのガンマ線線量率は、5 nGy/h程度にもなることがあるが、居住環境の多くの地点ではこれよりはるかに少ない。

*「電離放射線の線源と影響」原子放射線の影響に関する国連科学委員会2008年報告書

参考資料Ⅲ

国際放射線防護委員会勧告による放射線防護

国際放射線防護委員会 (ICRP) は、職業人および公衆を放射線から防護するために勧告を行っており、1958年にPublication 1 (以下、Pub.1)、1962年に Pub.6、1965年に Pub.9、1977年にPub.26が採択されてきた。1977年勧告では放射線防護の考え方が整理され、体系化された。

その後、広島・長崎における原爆被爆線量の再評価がなされたこと、被爆生存者の疫学データがまとまってきたこと、さらに放射線防護の考え方と進歩に鑑みて、ICRP1990年勧告をPub. 60としてまとめた。2001年度から、わが国の法体系にPub. 60が取り入れられた。

ICRPは、2007年に新勧告としてPub. 103を発行した。ICRP2007年勧告は1990年勧告を基礎とした放射線防護制度に対して大幅な変更を求めるものでないが、線量に関して適用の考え方を明確にするとともに係数の変更を行った。現在、2007年勧告の法令取り入れの検討が進められている。

1 放射線防護の基本的な考え方

(1) 放射線影響の区分

放射線防護の観点から、人体に対する放射線影響を「確定的影響」と「確率的影響」の2 つに区分している。

確定的影響とは、障害を引き起こす確率が、しきい値を超えると急速に1(100%)に上昇し、障害の重篤度が線量の大きさとともに変わるものであって、水晶体の白濁、脱毛、皮膚の美容上受け入れがたい変化などがその例である。被ばく線量をしきい値以下に制限することによって、影響の発生を防止することができる。

確率的影響とは、その影響の起きる確率がしきい値のない線量の関数とみなされるものであって、発ガンや遺伝的影響をいい、致死性悪性腫瘍、子と孫 (2世代) の遺伝的欠陥などがその例である。表Ⅲ-1に確率的影響の名目リスク係数を示す。これは、年齢と性について平均化された確率的影響の発生確率である。

K = 1 K = CHOCKE FINA COOLED TOOLED TOOL								
	被ばく集団	がん	/	遺伝的	影響	合	計	
	がはく来回	Pub. 103	Pub. 60	Pub. 103	Pub. 60	Pub. 103	Pub. 60	
	全集団	5. 5	6. 0	0. 2	1. 3	5. 7	7. 3	
	成人	4. 1	4.8	0.1	0.8	4. 2	5. 6	

表 III-1 損害で調整された確率的影響についての名目リスク係数 $(10^{-2}/Sv)$

(2) 放射線防護の目的

被ばくに関連する可能性のある人の望ましい活動を過度に制限することなく、放射線による確定的影響の発生を防止し、確率的影響のリスクを合理的に達成できる程度に減少させる。

(3) 放射線防護体系

確定的影響の防止は被ばく線量をしきい値に達しないように制限すればよく、一方、確率的影響の防止は適切な線量限度を設けたうえで、被ばくを合理的に達成できる限り低く保つことによって達成できる。ICRPは、確率的影響があることを認識して線量限度に留まらず、次のような放射線防護体系を提言している。なお、1990年勧告では線量を増加させる「行為」と線量を減らす「介入」とを区別していたが、2007年勧告では放射線被ばくが「計画被ばく」、「現存被ばく」、「緊急時被ばく」の3つの状況で発生するとして、被ばく状況により防護体系を整理した。1990年勧告において、行為に対する防護の原則が示されたが、2007年勧告においても引き続きそれらの原則は防護体系の基本と考えられ、基本原則がどのように放射線源と個人に適用されるか、また線源関連の原則がどのように全ての制御可能な被ばく状況に適用されるのかが明らかにされている。

- ① 正当化の原則 : すべての被ばく状況において、害より便益を大きくすべきである。
- ② 防護の最適化の原則: すべての被ばくにおいて、被ばくする可能性、被ばくする人の数、およびその人たちの個人線量の大きさは経済的および社会的な要因を考慮して、合理的に達成できる限り低く保たれるべきである。
- ③ 線量限度適用の原則:患者の医療被ばくを除く計画被ばく状況においては、規制された線源からのいかなる個人への総線量も、適切な限度を超えるべきでない。

また、あらゆる放射線源が防護の対象になるとしながらも、線源または被ばく状況を規制する上での管理へのなじみやすさを考慮し、被ばくやリスクのレベルに応じて放射線防護管理の範囲を区別するため、管理を規制できない「除外」と管理は規制される必要がない「免除」の概念を導入した。

2 等価線量と実効線量

確率的影響の確率は、吸収線量のみでなく線量の原因となる放射線の種類とエネルギーに依存する。このことは、線質(放射線の種類とエネルギー)に関係づけられた係数で吸収線量を加重することにより考慮される。この加重した線量のことを等価線量、この目的のための加重係数を放射線加重係数(W_R)という。組織Tの等価線量(H_T)は次式で与えられる。

$$\mathbf{H}_{\mathrm{T}} = \sum_{\mathbf{R}} \mathbf{w}_{\mathbf{R}} \cdot \mathbf{D}_{\mathsf{T}, \mathbf{R}}$$

ここで、 $D_{T,R}$ は組織・臓器Tについて平均された放射線Rに対する吸収線量である。放射線加重係数の値を $\mathbf{表} \blacksquare - \mathbf{2}$ に示す。

また、確率的影響の確率と等価線量との関係は、照射された組織・臓器にも依存する。このため、確率的影響に対する個々の組織・臓器の寄与をすべての臓器・組織にわたって合計した実効線量が導入された。実効線量(E)は次の式で表される。

$$\mathbf{E} = \sum_{\mathbf{T}} \mathbf{w}_{\mathbf{T}} \cdot \mathbf{H}_{\mathbf{T}}$$

 \mathbf{w}_{T} は組織 \mathbf{T} の組織加重係数である。組織加重係数の値を $\mathbf{z} = -3$ に示す。この実効線量の基本的な定義式は1990年勧告から変わっていないが、2007年勧告では、新しい男女別の人体モデルにより男性と女性の臓器線量を別々に計算することが可能になり、その結果、実効線量は標準男性と標準女性の臓器・組織 \mathbf{T} に対して評価された等価線量 $\mathbf{H}_{\mathbf{T}}^{\mathbf{M}}$ および $\mathbf{H}_{\mathbf{T}}^{\mathbf{F}}$ から次式のように計算される(性別値の平均化)。

$$\mathrm{E} \ = \sum_{\mathrm{T}} \mathrm{w}_{\mathrm{T}} \ \cdot \left[\frac{\mathrm{H}_{\mathrm{T}}^{\mathrm{M}} + \mathrm{H}_{\mathrm{T}}^{\mathrm{F}}}{2} \right]$$

表 Ⅲ一2 放射線加重係数

放射線の種類	放射線加重係数(w _R)				
次 別 旅 り 作 類	Pub. 103	Pub. 60			
光子	1	1			
電子およびμ粒子	1	1			
中性子	中性子エネルギーの関数としての連続曲線	$5\sim20$			
陽子および荷電π中間子	2	5			
アルファ粒子など	2 0	2 0			

表 Ⅲ-3 組織加重係数

臓器・組織・	組織加重係数(w _T)		臓器・組織	組織加重係数(w _T)	
加成有序。小丘小纹	Pub. 103	Pub. 60	加权有户 小丘小拟	Pub. 103	Pub. 60
肺	0. 12	0. 12	食道	0.04	0.05
胃	0. 12	0. 12	膀胱	0.04	0.05
骨髄	0. 12	0. 12	肝臓	0.04	0.05
結腸	0. 12	0. 12	骨表面	0.01	0. 01
乳房	0. 12	0.05	皮膚	0.01	0. 01
残りの組織	0. 12	0.05	脳	0.01	_
生殖腺	0.08	0. 20	唾液腺	0.01	_
甲状腺	0.04	0.05	合 計	1	1

3 線量限度の設定

線量限度は個人の被ばく線量を制限するために設定された値であり、計画被ばく状況にのみ適用されるが、患者の医療被ばくには適用されない。ICRPが勧告した線量限度を表面-4に示す。この線量限度は、"安全"な範囲と"危険"な範囲との境界線でないことを、ICRPは強調している。

事故による放射線被ばくを除けば、一般公衆はもとより作業者といえども、しきい線量に近い放射線被ばくを受けることはあり得ない。放射線防護での線量限度を考えるときに、特に確率的影響が問題となる。実効線量限度は確率的影響の制限を考慮して設定されている。この限度によって確率的影響の発生確率を容認できるレベルまで制限することになる。ただし、眼の水晶体および限られた面積の皮膚については、実効線量限度によって確定的影響が必ずしも防護されるとは限らないので、これらの組織に対しても限度を設定した。

表 Ⅲ-4 計画被ばく状況における線量限度の勧告値

適	用	職業被ばく	公衆被ばく
実 効 線 量		決められた5年間の平均が	1年に1 mSv*2
		1年あたり20 mSv*1	
等 価 線 量	眼の水晶体	150 mSv/年	15 mSv/年
	皮膚	500 mSv/年	50 mSv/年
	手先及び足先	500 mSv/年	_

^{*1} 実効線量は任意の1年に50 mSvを超えるべきでないという付加条件つき。

4 線量限度設定の根拠となる考え方

容認できるレベルの判断にあたって、ICRPは日常生活においてどれくらいのリスクであればそのリスクを容認できるかという、リスクの容認性に基礎を置いている。ICRPは、線量限度をいかなる合理的な根拠に基づいても被ばくは受け入れることができない「容認不可」と歓迎されないが合理的に耐えられる「耐容可」との間の領域における一つの境界値としている。即ち、「容認不可」なレベルの下限値であり、「耐容可」なレベルの上限値である。ICRP1977年勧告では、放射線と関係のない産業において、平均の年致死率は作業者百万人あたり約100人であり、その中の高リスク亜集団では平均の10倍のリスクにさらされる、という仮定に基づき「職業上の年致死率10⁻³」を線量限度の基準となるリスクとして採用できるかもしれないと考えた。さらに「平均余命の損失」などの放射線リスクによる損害を考慮して総合的に判断した結果、ICRP1990年勧告では作業者と公衆に対してそれぞれ値が求められ、作業者に対して20mSv/年の連続被ばく(生涯 1.0 Sv)は容認できないレベルの下限値とした。一般公衆に対しては、作業者の場合と同様に「容認できるリスク」に関する判断に加えて、ラドンを除く自然放射線による被ばくが約 1mSv/年であることを考慮して設定した。2007年勧告では1990年勧告の値や導出根拠がそのまま継承されている。

^{*2} 特殊な状況では、5年間にわたる平均が年あたり1 mSvを超えなければ、単一年にこれよりも高い 実効線量が 許されることがありうる。

参考資料Ⅳ

軽水型原子力発電所に対する線量目標値

ICRPの基本的な考え方である「as low as reasonably achievable」の取入れに関して、旧原子力安全委員会において「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」(1976年9月制定、2001年3月最終改訂)が制定されている。

この指針によれば、発電用軽水炉施設の通常運転時における環境への放射性物質の放出に伴う 周辺公衆の線量を低く保つための努力目標として、施設周辺の公衆の線量についての目標値は下 記の通りである。

○実効線量 50マイクロシーベルト/年 [=50 μ Sv/y]

1 敷地の全軽水型原子炉から環境に放出される放射性物質による実効線量。具体的には発電所周辺の集落における食生活等が標準的である人を対象とし、現実的と考えられる計算方法およびパラメータにより算出する。

- ①気体廃棄物については、放射性希ガスからのガンマ線による外部被ばくおよび放射性ヨウ素の 体内摂取による内部被ばく。
- ②液体廃棄物については、海産物を摂取することによる内部被ばく。

これらの目標値を積極的に達成するために、各原子力発電所では放射性廃棄物の環境への放出について、保安規定で放出管理目標値や放出管理の基準値を次に示すように定めている。

なお、放出管理の基準値は、放射性液体廃棄物中のトリチウムのように、人への影響が非常に 小さいことから放出管理目標値が定められない放射性物質に対して、放出量の目安値として定め られている。

<放射性気体廃棄物の放出管理目標値>

①希ガス (単位:Bq/年)

敦賀発電所	ふげん	もんじゅ	美浜発電所	大飯発電所	高浜発電所
1. $3 \times 10^{15} * 1$	_*2	5. $5 \times 10^{12} * 3$	$1.0 \times 10^{15} * 4$	1.0×10^{15} * 5	3.3×10^{15}

②ヨウ素-131

敦賀発電所	ふげん	もんじゅ	美浜発電所	大飯発電所	高浜発電所
$1.2 \times 10^{10} * 1$	_*2	- * 3	$2.5 \times 10^{10} * 4$	$2.5 \times 10^{10} * 5$	6. 2×10^{10}

③粒子状物質 (コバルトー60)

					(1 1 1 1 7
敦賀発電所	ふげん	もんじゅ	美浜発電所	大飯発電所	高浜発電所
$5.9 \times 10^{7} * 6$	- * ⁷	_	_	_	_

④トリチウムを除く

敦賀発電所	ふげん	もんじゅ	美浜発電所	大飯発電所	高浜発電所
_	8. 7×10 ¹² * ⁷	_	_	_	_

⑤トリチウム (3H)

敦賀発電所	ふげん	もんじゅ	美浜発電所	大飯発電所	高浜発電所
_	3. 1×10^{8} * ⁷	_	_	_	_

<放射性液体廃棄物*8(トリチウムを除く)放出管理目標値>

(単位: Bq/年)

(単位: Bq/年)

(単位: Ba/年)

(単位: Bq/年)

(単位: Bq/年)

敦賀発電所	ふげん	もんじゅ	美浜発電所	大飯発電所	高浜発電所
7.4×10^{10}	$3.8 \times 10^{8 * 7}$	4. $7 \times 10^{8} * 9$	7. $1 \times 10^{10} * 5$	7. $4 \times 10^{10} * 5$	1.4×10^{11}

- *1 「敦賀発電所」は敦賀1号機の廃止措置計画の認可を受け、放出管理目標値を変更した。 (保安規定改正日;2017年4月19日)
- *2 「ふげん」は運転終了に伴い、炉心から燃料がなくなったことから、希ガス、ヨウ素-131の放出管理目標値を削除した。(保安規定改正日;2003年10月1日)
- *3 「もんじゅ」は、廃止措置計画の認可を受け、希ガス、ヨウ素-131の放出管理目標値を変更した。 (保安規定改正日;2018年4月1日)
- *4 「美浜発電所」は美浜1,2号機の廃止措置計画の認可を受け、放出管理目標値等を変更した。 (保安規定改正日;2017年4月19日)
- *5 「大飯発電所」は大飯1,2号機の廃止措置計画の認可を受け、放出管理目標値等を変更した。 (保安規定改正日;2019年12月11日)
- *6 「敦賀発電所」は敦賀1号機の廃止措置計画の認可を受け、敦賀1号機の廃止措置に伴い発生する粒子 状放射性物質(コバルトー60)を放出管理目標値に追加した。(保安規定改正日;2017年4月19日)
- *7 「ふげん」は廃止措置計画の変更認可を受け、原子炉周辺設備解体撤去期間以降に実施する工事等に伴う値に変更した。(保安規定改正日;2019年7月22日)
- *8 放射性液体廃棄物のトリチウム(³H)に関しては、各発電所の保安規定に以下の放出管理の基準値等が 設けられている。

(単位: Bq/年)

敦賀発電所	ふげん	もんじゅ	美浜発電所	大飯発電所	高浜発電所
7. 7×10^{13}	$2.6 \times 10^{12} * 7$	$2.8 \times 10^{12} * 9$	$1.1 \times 10^{14} * 4$	1. $7 \times 10^{14} * 5$	2.2×10^{14}

*9 「もんじゅ」は、廃止措置計画の認可を受け、放出管理目標値を変更した。 (保安規定改正日;2018年4月1日)

被ばく線量の推定と評価法

原子力発電所周辺住民等の健康・安全を確保することの担保として、周辺監視区域外における線量限度(実効線量について1mSv/年)を十分下回っていることを確認するため線量の推定・評価を行う。

線量の推定・評価は、「平常時モニタリングについて(原子力災害対策指針補足参考資料) (2018年4月、原子力規制庁監視情報課)」に基づき、「1年間の外部被ばくによる実効線量」 と「1年間の飲食物等の摂取からの内部被ばくによる預託線量」に分けて算定し、その結果を発 電用原子炉施設周辺の公衆の受ける線量目標値(実効線量で年間50 μ Sv)と比較することによって実施する。

「1年間の外部被ばくによる実効線量」は、空間放射線量率または積算線量から算定する。

「1年間の内部被ばくによる預託実効線量」は、飲食物等の放射性核種の放射能濃度と摂取量等から算定する。なお、必要に応じて放射性ヨウ素による甲状腺に対する等価線量を算定する。

ここでは、環境放射線および環境試料の放射能濃度の測定データからの線量評価法を紹介する。

1 外部被ばくによる実効線量

原子力施設に起因する空間放射線からの外部被ばくによる実効線量は、空間放射線量率または積算線量の測定データを解析して算定できる。

空間放射線量率のデータは、時々刻々の放射線レベルの変動パターンやエネルギー情報も与えるので、それらを解析することによって原子力施設からの寄与をかなり良く弁別することができる。また、積算線量は、その場の空間放射線量を一定期間積算したものであり、平常値と比較することにより原子力施設からの寄与を評価することができる。

これらの解析結果から実効線量〔単位:ミリシーベルト(mSv)〕の推定値を求めるには、原則として、空気カーマ(単位mGv)に0.8*1を乗ずる。

2 内部被ばくによる預託実効線量

原子力施設に起因する内部被ばくによる預託実効線量は、標準的な飲食物摂取および呼吸 摂取モデル *2 を仮定して、**表V** -1 の値を用いて、飲食物および大気中の放射能濃度から次 式により算出できる。

預託実効線量(μSv) = 〔換算係数・表V-1 の値(μSv/Bq)〕

× [年間の核種摂取量(Bq)] × [市場希釈補正] × [調理等による減少補正]

市場希釈係数、調理等による減少補正は必要があれば行う。

^{*1} 緊急事態発生時の初期のモニタリングにおいては1mGy=1mSvとする。

^{*2} 通常の食品摂取モデルとして成人が1日当りに摂取する食品の量を、葉菜100g、牛乳0.2 ℓ、魚200g、 無脊椎動物20g、海藻類40gとし、呼吸率は22.2 m/日、飲料水の摂取量は2.65 ℓ/日としている。

平常時においては、環境中の放射能レベルは急激に変化することはないので、米のように一時期に収穫したとしても年間を通じて保存、摂取するものについては年間の核種摂取量は次式を用いる。

年間の核種摂取量=〔環境試料中の年間平均核種濃度〕×〔その飲食物等の年間摂取量〕

また、対象とする時期(収穫時期等)が限られ、保存のきかない食品等については次式を用いる。

年間の核種摂取量= 〔環境試料中の対象期間内平均核種濃度〕 × 〔その飲食物の毎日摂取量〕× 〔対象期間内摂取日数〕

放射能レベルが毎日変動するようなもので、毎日の核種濃度が求められるか、それに近いデータが得られる場合には、次式を用いる。

年間の核種摂取量= Σ[(環境試料中の毎日の核種濃度) × (その飲食物の毎日摂取量)]

放射性ョウ素については、 $\mathbf{表V}-\mathbf{2}$ より、年齢に応じた適切な実効線量係数を用いる。なお、原則として甲状腺等の預託等価線量は平常時のモニタリングにおいては算定の必要はないが、算定の必要が生じた場合には、 $\mathbf{表V}-\mathbf{3}$ の数値を用いて、上記と同様の方法で計算できる。

次頁に示す「換算係数」は、「平常時モニタリングについて(原子力災害対策指針補足参考 資料)(2018年4月、原子力規制庁監視情報課)解説B」を引用したものである。

表**V** - **1** の値はICRPから出版されているCD-ROM(The ICRP Database of Dose Coefficients: Workers and Members of the Public(Version 3.0))に含まれているPublication 72から抜粋したものであり、化学形等によって複数の値が示されている核種については、そのうちの一番大きな値とし、粒子状のものについては粒子径を 1μ mとしている。

なお、表V-1にはH-3、C-14など化学形等により実効線量係数の値が数桁に及ぶ範囲で大きく異なる核種も含まれており、その分析方法等から化学形等が明らかな場合には、Publication 68、71、72などから当該化学形等に相当する実効線量係数を使用すべきである。

表V-2の値は「発電用軽水型原子炉施設周辺の線量目標値に関する評価指針(原子力安全委員会、平成13年3月)」を参照して記載されており、放射性ヨウ素による、年齢に応じた(幼児(~4才)、乳児(~1才))実効線量を算定する際に用いる。

表 V-1 1 Bqを経口または吸入摂取した場合の成人の実効線量係数

 $(\mu \text{Sv/Bq})$

核種	経口摂取	吸入摂取
H = 3	4.2 × 10 ⁻⁵ (有機物)	2.6 × 10 ⁻⁴ (エアロゾル)
11 0	1.8 × 10 ⁻⁵ (水)	1.8 × 10 ⁻⁵ (水)
C - 14	5.8 × 10 ⁻⁷ (有機物)	1.8 × 10 (/K)
C — 14	3.8 人 10 (有傚初)	5.8 × 10 ⁻³ (エアロゾル) 6.2 × 10 ⁻⁶ (二酸化物)
Na - 22	3.2 × 10 ⁻³ *1	0.2 // 10 (二版旧///
$\frac{\text{Na}-22}{\text{Cr}-51}$	3.8×10^{-5}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3.0 \ 10	5.1 × 10
Mn - 54	1.1 / 10	1.0 / 10
Fe - 59	1.6 × 10	T. 0 /\ 10
Co - 58	7.4 \ 10	2.1 \(\tau \) 10
Co- 60	3.4 \ 10	5.1 \(\) 10
Zn- 65	3.9×10^{-3}	2.2 \times 10
Sr- 89	2.6 × 10 ⁻³	7.9×10^{-3}
Sr- 90	2.8×10^{-2}	1.6 × 10 ⁻¹
Zr- 95	9.5 × 10 ⁻⁴	5. 9 × 10 ⁻³
Nb- 95	5.8×10^{-4}	1.8×10^{-3}
Ru — 103	7.3 \times 10 $^{-4}$	3.0×10^{-3}
Ru — 106	7. 0 \times 10 $^{-3}$	6. 6 \times 10 $^{-2}$
I —129	$7.2 \times 10^{-2} *2$	6. 6 \times 10 $^{-2}$ * 2
I -131	$1.6 \times 10^{-2} * 2$	$1.5 \times 10^{-2} *^{2}$
I -133	$3.1 \times 10^{-3} *2$	$2.9 \times 10^{-3} *2$
Cs-134	1.9×10^{-2}	2.0×10^{-2}
Cs-137	1.3 × 10 ⁻²	3.9 × 10 ⁻²
Ba-140	2.6 × 10 ⁻³	5.8 × 10 ⁻³
La-140	2.0 × 10 ⁻³	1.1 × 10 ⁻³
Ce-144	5. 2 × 10 ⁻³	5. 3 × 10 ⁻²
Ra — 226	2.8×10^{-1}	9. 5
Th-232	2.3×10^{-1}	1.1 × 10 ²
U - 235	4.7×10^{-2}	8. 5
U-238	4.5×10^{-2}	8. 0
Pu-238	2.3×10^{-1}	1.1 × 10 ²
Pu-239	2.5×10^{-1}	1. 2 × 10 ²
	·	

^{*1} 文部科学省告示別表第2より引用した。

^{*2} ICRP Publication 66などのモデルを基に摂取されたヨウ素が体液中から甲状腺へ達する割合を0.2として計算した値である。

表 V - 2 1 Bqの放射性ヨウ素を経口又は吸入摂取した場合の幼児及び乳児の実効線量係数

 $(\mu \text{ Sv/Bq})$

核種	経口	摂 取	吸 入	摂 取
4久7里	幼児	乳児	幼児	乳児
I — 131	7. 5×10^{-2}	1.4×10^{-1}	6. 9×10^{-2}	1.3×10^{-1}
I — 133	1. 7×10^{-2}	3.8×10^{-2}	1.6×10^{-2}	3.5×10^{-2}

表 V - 3 1 Bqの放射性ヨウ素を経口又は吸入摂取した場合の成人、幼児及び 乳児の甲状腺の等価線量に係る線量係数

 $(\mu \text{ Sv/Bq})$

核種	経 口 摂 取*1			吸 入 摂 取			
1久1里	成人	幼児	乳児	成人	幼児	乳児	
I — 131	3.2×10^{-4}	1.5×10^{-3}	2.8×10^{-3}	2.9×10^{-4}	1.4×10^{-3}	2.5×10^{-3}	
I — 133	5.9×10^{-5}	3. 3×10^{-4}	7. 3×10^{-4}	5. 5×10^{-5}	3.0×10^{-4}	6.8 \times 10 ⁻⁴	

*1 ICRP Publication 66などのモデルを基に摂取されたヨウ素が体液中から甲状腺へ達する割合を0.2、化学形を元素状として計算した値である。

環境試料の放射性核種の放射能濃度の結果の目安とするために、1年間連日摂取することによって、成人の預託実効線量が年間0.05ミリシーベルト(mSv)となる各種環境試料中の放射能濃度の計算結果の代表例を表V-4に示す。

表 V - 4 成人の預託実効線量が0.05mSv となる食品中の核種濃度

	大気	飲料水	葉菜類*1	穀類*1,2	魚類*1	無脊椎動物*1	海藻類*1
	$(\mathrm{mBq/m^3})$	(mBq/L)	(Bq/kg生)	(Bq/kg生)	(Bq/kg生)	(Bq/kg生)	(Bq/kg生)
2 2 2 2 2 2	3, 100	16,000	430	1, 100	210	2, 100	1, 100
5 4 M n	4, 100	73, 000	1,900	4,800	960	9,600	4,800
^{5 8} C o	2, 900	70,000	1,900	4,600	930	9, 300	4,600
^{6 0} C o	200	15,000	400	1,000	200	2,000	1,000
⁹⁰ S r	39	1,800	49	120	24	240	120
^{1 3 7} C s	160	4,000	110	260	53	530	260
³ H * ³	340,000	2, 900, 000	33,000	82, 000	16,000	160,000	82,000
摂取量	22.2 m³/日	2.65 L/日	100 g/日	420 g/日	200 g/日	20 g/日	40 g/日

- *1 葉菜類や魚類等において調理等による減少補正は考慮していない。
- *2 摂取量は2017年度国民栄養調査食品群別摂取量(一人1日当たり平均値)の総数を用いた。
- *3 トリチウム (3 H) の実効線量係数は、大気及び水道水については水の 1.8×10^{-8} (8 mSv/Bq)、葉菜類、穀類、魚類、無脊椎動物及び海藻類については有機物の 4.2×10^{-8} (8 mSv/Bq)を用いた。

参考資料VI

大気中水分、雨水(降下物)のトリチウムの評価方法

【測定の目的・経緯】

大気中水分、雨水(降下物)のトリチウムの測定については、平成8年度から定期調査として報告を開始し、平成17年度からは、大気中水分を期間調査から月間調査に、雨水を月間調査から期間調査に変更した。

トリチウムは表VI-1に示すように、単位放射能当たりの線量への寄与が他の主要な核種と比べ数百分の1~数千分の1と小さく、環境安全上大きな問題となるものではないが、放射性ヨウ素や 60 Co等の放射性核種の放出がほとんどなくなったことから、環境モニタリングにおいて相対的にトリチウムの比重が高くなっており、また、希ガスを除けば、定常的に放出される唯一の核種であるので、定期調査に加えたものである。

県内で多数を占める軽水型原子炉施設を例にとれば、気体廃棄物中のトリチウムは、海への液体廃棄物の放出とは異なり、使用済燃料プールや定期検査時の原子炉キャビティーからの蒸発や格納容器パージがあるため、ほぼ定常的に発生し、放出される。

大気中水分のトリチウム分析は、吸入に伴う内部被ばく線量を把握するためであり、雨水(降下物)については、雨によるウォッシュアウト(洗い落し)効果によって大気中のトリチウムが地表にもたらされることや、空気中の水蒸気と地表面に溜まった水とが比較的容易に入れ代わること等から、大気中水分の測定結果を解釈する際の参考として分析しているものである。トリチウムの存在形態としてはHTや T_2 のようなガス状の存在も考えられるが、環境では速やかにHT0 に変換するとされているので、水分を採取することとしている。

表Ⅵ一	I IBQを稻	Eロまたは	吸入摂取	した場合	の放	人の夫タ	沙 似 重 徐 多	汉 (µSv/	Bq)
	経	П	摂	取		吸	入	摂	取
ЗH	1.8×10^{-5}				1.8	$\times 10^{-5}$			
^{6 0} Co	3.4×10^{-3}	(³ Hに対 ⁻	する倍数	190)	3. 1	$\times 10^{-2}$	(³ Hに対	する倍数	1,700)
$^{1\ 3\ 1}{ m I}$	1.6×10^{-2}	("		890)	1.5	$\times 10^{-2}$	("		830)
^{1 3 7} Cs	1.3 $\times 10^{-2}$	("		720)	3. 9	$\times 10^{-2}$	("		2200)

表VI-1 1 Bgを経口または吸入摂取した場合の成人の実効線量係数 $(\mu Sv/Bg)$

【試料の採取・測定法】

大気中水分は線量率連続モニタの観測局等に設置した除湿器により月毎に採取し、雨水は降下物の核種分析用の水盤または別の水盤から月ごとに分取して3ヶ月分まとめ(集合試料)、蒸留等の前処理を行ったものを低バックグラウンド液体シンチレーション検出器により測定している。

【発電所影響の評価法】

測定結果は Bq/ℓ で報告するが、大気中水分の吸入による預託実効線量はトリチウムの大気中濃度 (Bq/m^3) から求める。このため、大気中水分のトリチウム (Bq/ℓ) に当該期間の平均気温と平均相対湿度を用いて求めた空気中の水分量 (ℓ/m^3) を乗じて大気中濃度 (Bq/m^3) を算出して評価を行う。

過去実績(1975~2018年度)の月間最大値として、高浜地区の大気中水分から2007年11月に52 $Bq/\ell\ell$ が検出されている。仮に100 $Bq/\ell\ell\ell$ のトリチウム濃度の水分を含む空気を成人が年間連続して呼吸し続けると仮定した場合、表VI-1の線量換算係数および1日の呼吸量を用いれば、

 $(100 Bq/\ell \times 0.0112 \ell/m^3*)$ ×22.2 $m^3/$ 目× 365日× $1.8\times 10^{-5} \mu Sv/Bq=1.6\times 10^{-1} \mu Sv$ と計算される。これは、発電用原子炉施設周辺の公衆の線量目標50 μSv または2008年国連科学委員会報告によるラドン等の吸入による内部被ばく線量1.26 μSv と比べ、無視し得る極めて小さな値である。

なお、大気中水分のトリチウム濃度 (Bq/ℓ) は、空気中の水分量が気温や相対湿度によって変動するため、季節によって3~4倍値が異なることに注意を要する。

* 0.01120/m³は敦賀特別地域気象観測所における2018年度の平均気温および平均相対湿度を基に計算した空気中の水分量である。

参考資料Ⅷ

緊急時モニタリングにおける飲料水採取候補地点一覧および調査計画

(福井県緊急時モニタリング実施要領 抜粋)

市町	水道名称	水源	採取可能な施設等	水道原水					
1 1 m1	<u> </u>	種類		調査対象	2019	2020	2021	2022	2023
福井市	城有地区簡易水道	表流水	城有町内手洗い場 居倉駐車場	0			0		
	敦賀市上水道	地下水	昭和浄水場	0	0				
敦賀市			敦賀市役所 疋田浄水場	0					0
	愛発西水道施設	表流水	愛発公民館 湯岡管理事務所		0				
	小浜市上水道	地下水		0	0				
	泊簡易水道	表流水	泊浄水場 若狭姫彦神社	0		0			
小浜市	太良庄簡易水道	表流水	太良庄浄水場	0				0	
	 矢代飲料水供給施設	表流水	若宮神社 矢代浄水場	0					0
trate > I - a		表流水	福寿寺 上水道管理センター	0	0				
鯖江市	鯖江市上水道	地下水	鯖江市役所						
越前市	越前市上水道	表流水 地下水	日野川地区水道管理事務所 越前市役所	0		0			
		湧水	あいぱーく今立 中地区浄水場	0				0	
池田町	中地区簡易水道	表流水	池田町役場						
		地下水	南条浄水場	0					0
	南越前町上水道		南越前町役場 今庄・湯尾浄水場	0				0	
南越前町		表流水	今庄総合事務所						
		表流水	広野浄水場 宇津尾休憩所	0			0		
		表流水	今泉浄水場	0		0			
	越前町上水道	表流水	河野総合事務所 朝日町中央地区浄水場	0	0				
	透前"1"工术是	地下水	越前町役場						
	宮崎地区簡易水道	ダム水	熊谷浄水場 大留浄水場 宮崎コミュニティセンター	0			0	0	
越前町	越前北部地区簡易水道	表流水	布殿浄水場 越前コミュニティセンター	0	0				
A 1011.1	米ノ地区簡易水道	表流水	米ノ浄水場	0		0			
			城崎南保育所 平等浄水場	0					
	織田地区簡易水道	表流水	惣分谷浄水場	Ö		0			0
	版田地区间纫八边	地下水	山中浄水場 織田コミュニティセンター	0			0		
	学 汇四1.水学	IIIh T →lo	美浜町水道管理所	0				0	
	美浜町上水道	地下水	美浜町役場 落合川浄水場	0					0
美浜町	丹生・竹波簡易水道	表流水	中村屋旅館	U					
	菅浜簡易水道	表流水 地下水	菅浜ろ過池 菅浜生協横公園	0	0				
	高浜町上水道	地下水	高浜町上水道センター高浜町役場	0		0			
高浜町		表流水	日引簡易水道施設	0			0		
	本郷地区簡易水道	ダム水	日引漁港 大津呂浄水場	0				0	
	東中部地区簡易水道	地下水地下水	おおい町役場 名田庄総合事務所						
おおい町		表流水	東部第4水源 大山浄水場	0	0				0
	大島地区簡易水道	地下水	し一まいる横公園 大見浄水場	0		0			
	犬見飲料水供給施設	表流水	犬見地区民家前			U	_		
若狭町	三方地区簡易水道	表流水 地下水	松尾山浄水場 若狭町三方庁舎	0			0		
石 (大門	若狭町上水道	表流水 地下水	熊川浄水場 若狭町上中庁舎	0				0	
		調査数	<u> </u>	33	7	7	6	7	6

参考資料Ⅷ

緊急時モニタリングにおける土壌採取候補地点一覧および調査計画

(福井県緊急時モニタリング実施要領 抜粋)

対象の空間線量率		上校校历记分别上	BGデータ	訓	間査予定	定年度*	: 2	/#: /*.
観測局*1	市町	土壤採取候補地点	収集年度	2019	2020	2021	2022	備考
白山局	越前市	白山公民館ゲートボール場	2018					
		白山小グラウンド			0			
白崎局	越前市	白崎公園		0				
		武生第六中グラウンド				0		
瓜生局	越前市	瓜生水と緑公園多目的広場	2018					
		瓜生水と緑公園					0	
米ノ局	越前町	かれい公園		0				
		アクティブハウス越前グラウンド	2012					
玉川局	越前町	玉川地区集落施設広場		0				
		梅浦多目的運動場					0	
		アクティブハウス越前グラウンド	2012					
朝日小学校局	越前町	陣屋の里ゲートボール場	2017					
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A2114 4	朝日小グラウンド				0		
織田局	越前町	織田中央公園	2018					
// (A / H)	VEX 1111.1	織田中グラウンド	2010		0			
河野局	南越前町	河野ふれあいシーサイドパーク	2018					
刊书间	111/62/11/11/11	河野王子根公園	2010			0		
大良局	南越前町	道の駅河野空き地		0		0		
八尺川	用趣制門	河野桜橋総合公園野球場	2012					
湘艮 巳	古地兴旺	今庄中部地区農集施設横広場						
湯尾局	南越前町		2018					
	±+4	湯尾小グラウンド	0014				0	
宇津尾局	南越前町	青少年育成センターグラウンド跡	2014					
1 I		境公民館グラウンド	2014					
板取局	南越前町	今庄365スキー場	2018					
	敦賀市	葉原小跡グラウンド	2014					
古木局	南越前町	スポーツパーク476グラウンド	2017					
杉津MS	敦賀市	東浦小グラウンド	2018					
		東浦体育館ゲートボール場	2014					
五幡MS	敦賀市	五幡ふれあい会館横広場		0				
		東浦体育館ゲートボール場	2014					
縄間MS	敦賀市	西浦児童館跡空き地	2013					
		常宮小跡グラウンド			0			
敦賀局	敦賀市	松島中央公園	2018					
		中央小グラウンド					0	
		総合運動公園多目的グラウンド	2012					
栗野局	敦賀市	JAEAグラウンド	2014					
		黒河小グラウンド				0		
浦底局	敦賀市	猪ヶ池野鳥園	毎年度	0	0	0	0	定期調査地点
		明神寮	毎年度	0	0	0	0	定期調査地点
東郷局	敦賀市	東郷コミュニケーションセンター グラウンド		0				
		咸新小グラウンド					0	
		中郷体育館グラウンド	2014					
竹波局	美浜町	竹波区内公園		0				
13 100/13	,,,,,	高那弥神社	毎年度	0	0	0	0	定期調査地点
久々子局	美浜町	美浜町民広場	2018				Ŭ	
2 - 4 /F4		体育センター空き地	2014					
丹生局	美浜町	奥浦公園	2017	 				
/ 1 <u>-</u> L/N	~ IZ-1	丹生多目的公園	2011		0			
坂尻局	美浜町	坂尻ゲートボール場		0				
%.几归	大供門	ふれあい広場グラウンド	2012					
<i>Н</i> -ШМ D	半 汇 m							
佐田M P	美浜町	ふれあい広場グラウンド	2012					
		美浜東小グラウンド ニタリングステーション MP・モニタ				0		

^{*1} 記号の意味 MS:モニタリングステーション、MP:モニタリングポスト、UPZ:緊急時防護措置準備区域

^{*2 2023}年度以降の調査計画は2022年度の調査終了後に検討する。

参考資料価 つづき

対象の空間線量率	市町	土壌採取候補地点	BGデータ		間査予定	官年度*	: 2	備考
観測局*1	1 1 m1		収集年度	2019	2020	2021	2022	湘石
三方B&G体育館局	若狭町	円成寺横ゲートボール場		0				
		みそみ小グラウンド			0			
		農村広場小グラウンド	2014					
神子局	若狭町	みさき漁村体験施設グラウンド	2018					
		神子ゲートボール場				0		
熊川局	若狭町	熊川小グラウンド	2017					
		熊川宿公園					0	
		かみなか農村運動公園グラウンド	2012					
阿納尻局	小浜市	小浜ふれあいスクール広場	2014					
		内外海小グラウンド			0			
		堅海小グラウンド跡	2014					
小浜局	小浜市	台場浜公園	2017					
		中央公園					0	
加斗MP	小浜市	加斗小グラウンド	2014					
,		下加斗ゲートボール場				0		
口名田局	小浜市	市総合運動場多目的グラウンド	2012					
		口名田小学校グラウンド			0			
長井局	おおい町	長井浜海水浴場広場	2017		Ŭ			
2017/0		長井局横駐車場				0		
三重局	おおい町	名田庄児童館グラウンド	2014					
— <u>至</u> /6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	名田庄総合運動公園グラウンド			0			
納田終局	おおい町	頭巾山青少年旅行村ソフトボール場	2014					
11 1 FH (1/4) FD	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	溪流公園			0			
佐分利局	おおい町	石山すこやか広場	2018					
1233-137-0	40401 1.1	きのこの森広場					0	
		佐分利川公園ゲートボール場	2014					
川上MP	おおい町	川上公民館広場	2017					
/·/1	40401 . 1	安川集落生改セ ゲートボール場	2011			0		
日角浜局	おおい町	脇今安バス停横公園	2017					
日月沃旭	4040 7	大島小グラウンド	2011				0	
和田MP	高浜町	和田港公園		0			Ŭ	
7 μ μ 1V1 1	IHI IX. 1	和田小グラウンド			0			
		関電研修センターグラウンド	2014					
小黒飯局	高浜町	神野小跡グラウンド	2011				0	
/1.W/V/III	IHI IX. 1	小黒飯局横空き地	2018					
		青葉総合グラウンド	2012					
山中局	高浜町	内浦公民館多目的場	2017					
H1.1.10	IH1124-1	内浦小グラウンド	2011			0		
	福井市	福井運動公園補助球場	2013			0		
	福井市	福井連動公園補助い場					 	
			2015					
IID 7 4 ~	大野市	ふれあい公園多目的グラウンド	2013					
UPZ外の市町 代表地点	勝山市	弁天緑地野球場	2013				 	
1/	あわら市	トリムパークかなづ多目的グラウンド	2013				 	
	坂井市	三国グラウンド	2013					
	永平寺町	松岡総合運動公園グラウンド	2013					
	池田町	池田小学校グラウンド	2013					
調査地点数	↓ * 3	92		10	10	10	10	

- *1 記号の意味 MS: モニタリングステーション、MP: モニタリングポスト、UPZ: 緊急時防護措置準備区域
- *2 2023年度以降の調査計画は2022年度の調査終了後に検討する。
- *3 定期調査地点および複数の観測局にまたがる地点の重複を差し引いた地点数。

参考資料 IX

平常時モニタリングの見直し

(1) 概要

平常時モニタリングの具体的な実施内容を示した「平常時モニタリングについて(原子力災害対策指針補足参考資料)」の策定(2018 年 4 月 4 日)を受けて、福井県環境放射能測定技術会議(以下、「技術会議」という。)は、平常時モニタリングの調査内容や評価方法の見直しを行った。見直し作業は、各構成機関の技術担当者で構成する環境放射線モニタリング技術検討ワーキンググループ(以下、「技術検討WG」という。)で実施し、2018 年度は5回、2019 年度は2回の会議を開催し、新たな計画、報告書の検討を行った。

(2) 平常時モニタリングの見直しの方針

「平常時モニタリングについて」は、最低限実施する必要がある平常時モニタリングの実施内容を記載しており、今回の見直しでは、この実施内容と技術会議の2018年度環境放射線モニタリングの内容を比較・整理し、適合していない項目については速やかに、かつ計画的に取り入れることとした。また、同資料では、緊急事態が発生した場合への平常時からの備えを目的としたモニタリングについても具体的な実施内容を示しており、福島第一原子力発電所の事故後、県が独自に実施してきた緊急時防護措置準備区域(UPZ: Urgent Protective Action Planning Zone)における電子式線量計による空間放射線量率や緊急時の陸水や陸土の採取候補地点における水準把握のための放射能測定も本計画に位置付け、結果の確認、集約を図ることとした。

(3) 具体的な見直しの内容

①空間放射線量

1) 空間放射線量率の連続測定

空間放射線量率を連続測定する観測局は、従来から構成機関ごとに原子力発電所からの距離や方位、居住地などを考慮して設置しており、従来どおりの測定を継続する。

また、緊急時に使用する電子式線量計がUPZ内に多数配置され、緊急時に備えて日頃からデータが収集されていることから、これらの測定データについても集計し、統計情報のとりまとめを行っていく。

2) 積算線量

積算線量計は、簡素で取り扱いが容易な計測機器であり、観測局による連続測定を補完するため、多数の地点で測定を実施してきた。しかし、観測局数が大幅に増えていることから配置の見直しを行い、原子力発電所から概ね 10 km内においては施設からの距離と方位、居住の状況等を考慮し、観測局との重複がないよう再配置する。なお、10 km以遠は被ばく評価の対象範囲としないため 2019 年度から廃止し、新たな測定地点での測定は 2021 年度から適用する予定である。

また、測定方法についても測定期間中の時間変化が確認できる電子線量計に順次変更する こととした。なお、事業者の測定方法の変更は、2021年の時点では可能な範囲で対応してい く。

②大気中の放射性物質

1) 浮遊じんの連続測定

県のダストモニタは、原子力発電所の周辺に距離と方位を考慮して設置しており、10分間

の測定でも 5 Bq/m³を概ね測定できると見込まれることから、従来どおりの測定を継続する。

2) 大気中の放射性物質の濃度

被ばく評価を目的とする原子力発電所周辺の大気や浮遊じんに対するガンマ線放出核種や トリチウムの分析は、従来どおりの調査を継続する。

③環境試料中の放射性物質の濃度

1) 陸水

被ばく評価を目的とする原子力発電所周辺の水道水のガンマ線放出核種とトリチウムの分析については、従来どおりの調査を継続し、「平常時モニタリングについて」で求められている放射性ストロンチウの分析は、2021 度から実施できるよう必要な分析体制の整備を行う。また、緊急時モニタリングにおける水道水採取候補地点としてあらかじめ定めている水道の「原水」の調査を、複数年のローテーションで計画的に実施していく。

2) 陸土

蓄積状況の把握を目的とする原子力施設周辺の陸土のガンマ線放出核種の分析については、 従来どおりの調査を継続し、緊急事態が発生した場合への備え等を目的とする放射性ストロ ンチウムやプルトニウムの分析については、対象地点や分析頻度を見直した。

また、従来から県が実施してきた緊急時モニタリングにおける土壌採取候補地点での調査 を本計画に位置付け、複数年のローテーションで計画的に実施していく。

3) 農産物

被ばく評価を目的とする原子力発電所周辺の農産物については、農業センサス (2015 年) の作況調査の結果を考慮し、新たに「米」を加え、葉菜 (大根(葉)またはホウレン草) ととも に調査を行う。また、ガンマ線放出核種に加え、放射性ストロンチウムも対象とする。

4) 畜産物

被ばく評価を目的とする原子力発電所周辺の畜産物については、生産状況に変化はなく、 美浜地区での調査を継続する。ただし、年間を通じた調査となるよう採取頻度を見直し、ガンマ線放出核種と放射性ストロンチウムの分析は、ともに1年間に採取したすべての試料を 対象とする。

5) 指標植物

被ばく評価の際に参考となり、また、緊急事態が発生した場合への備えを目的とする指標植物については、予期しない放出があった場合の周辺環境影響評価の参考にもなることから、調査は継続するものの、植物の生育状況を考慮して採取頻度を見直した。

6) 降下物

過去の原子力施設の事故等に起因する放射性物質が検出され、緊急事態が発生した場合への備えを目的とする降下物については、予期しない放出があった場合の周辺環境影響評価の参考にもなることから、従来どおりの調査を継続する。

7) 海水

緊急事態が発生した場合への備えを目的とする海水については、予期しない放出があった 場合の周辺環境影響評価の参考にもなることから、従来どおりの調査を継続する。

なお、一部の海洋試料については、他の環境試料に比べて採取頻度の高い地点があるが、 従来から技術会議が事業者の安全管理上の調査結果も合わせて評価してきたものであり、こ の対応は今後も継続していく。

また、各原子力発電所の放水口で行われている放水口モニタによる監視について、予期し

ない放出の早期検知を目的とする項目に加える。

8) 海底土

蓄積状況の把握を目的とする原子力施設周辺の海底土のガンマ線放出核種の分析については、従来どおりの調査を継続し、緊急事態が発生した場合への備えを目的とするプルトニウムの分析については、対象地点や分析頻度を見直した。

9) 海産食品

被ばく評価を目的とする原子力発電所周辺の海産食品については、北陸農政局農林水産統計年報(2016年)の漁獲量を参考とし、無脊椎動物に「タコ」や「ナマコ」を加える。また、魚類、無脊椎動物、海藻類のそれぞれで代表となる試料については、ガンマ線放出核種に加え放射性ストロンチウムの分析も行うこととし、2021年からすべての項目の調査が行えるよう必要な分析体制の整備を行う。

10) 指標海產生物

緊急事態が発生した場合への備えを目的とする指標海産生物については、予期しない放出があった場合の周辺環境影響評価の参考にもなることから、調査を継続する。ただし、1981年に発生した敦賀発電所漏えい事故影響の確認のため継続的に調査してきた地点については、その影響が長期間認められていないことから廃止する。また、放射性ストロンチウムやプルトニウムは、対象とする地点を見直した。

11) 対照地区における調査

原子力施設周辺との比較を行うための対照地区調査は廃止する。ただし、緊急事態が発生 した場合への備えを目的とする、大気(大気中水分)、陸土、指標植物、降下物、海水、指標 海産生物については、過去データの蓄積のある 30 km以遠の地点での調査を継続する。なお、 廃止した項目のうち、大気(浮遊じん)、水道水および農畜産物については国の環境放射能水 準調査の対象試料となっており、これらの状況は継続して把握できる。

12) アンチコインシデンス測定

過去の核実験影響のセシウム-137を確認することを目的としたアンチコインシデンス測定は、対象としている試料の放射能の水準が低下しており、「平常時のモニタリングについて」では、"測定目標値を下回った場合、より低いレベルの測定を求めない"としていることから、今後は、県の調査研究事業として実施する。

④評価方法

1) 測定値の取扱い

本計画に基づく調査における測定値は、単位時間当たりの放射線量や単位試料あたりの放射能など、従来どおりの取扱いを継続する。

2) 結果の評価方法

結果の評価は、「平常時のモニタリングについて」の記載に留意して、項目ごと、目的に応じて、過去実績を基に設定した平常の変動幅を評価基準とした従来どおりの評価を継続する。なお、環境試料中の放射能濃度の評価のための過去実績の対象期間を3年から5年に改める。

技術会議による結果の評価は、従来どおり四半期ごとおよび年度ごとに行う。なお、放射性 ストロンチウムも四半期ごとの評価を基本とするが、分析に要する時間が長いため、次四半期 に繰り越すことも可とする。

3) 測定目標値

測定目標値は、「平常時のモニタリングについて」の記載に留意して見直し、現在の調査実施

体制で実現可能な水準を設定した。測定目標値の一部では、当該資料に記載されている水準より高い水準に設定したものがあるが、被ばく評価の際に基準となる年間 0.05 μ Sv の評価は十分できることを確認した上で設定している。一方で、測定方法を変更することで要求される水準を満たすことが見込まれた水道水については、測定方法の一部を見直した。

⑤結果の報告

評価結果は、従来どおり四半期報、年報において取りまとめる。

年報においては、1年間分を混合して試料とする項目に加え、放射性ストロンチウムや緊急 事態が発生した場合への備えを目的とした調査の結果についてもとりまとめる。

(4) 技術検討WGでの検討の経過

2018年度

6月 第1回会議 現状のモニタリング実施内容の整理

9月 第2回会議 各項目の調査内容に関する見直し方針について 他

11月 第3回会議 測定値の取り扱いと評価方法について 他

12月 第4回会議 2019年調査計画書(案) について

3月 第5回会議 平常時モニタリングの結果の取扱いおよび評価方法について 他

2019 年度

8月 第1回会議 積算線量測定地点の再配置について

1月 第2回会議 年報様式の変更について

付録1 用語の説明

用語は平成13年度からのICRP Pub.60の法令取入れを反映している。

1 放射線に関する基礎的事項

① 原子

元素を構成する最小の粒子で、これはさらに中心となる原子核とその周りをとりまいている電子と からできている。原子核はさらにプラスの電気を持つ陽子と電気を持たない(即ち電気的に中性な)中性子をその主要な構成粒子としている。そこで原子核はプラスの電気を持っていることになり、そ の電気を打ち消すだけのマイナスの電気を持つ電子がそれをとりまいていて、原子全体としては電気 的に中性になる。

② 原子番号

原子核に含まれている陽子の数(従ってそれをとりまく電子の数)で原子番号が決められている。 原子番号(即ち陽子の数)でその原子の化学的性質が決まってくる。水素は原子番号1で陽子を1個 だけ持っており、ウランは原子番号92で原子核の中に陽子が92個入っている。

③ 質量数

原子核に含まれている陽子の数と中性子の数を加え合わせたもの。例えばウラン-235 では、陽子 92 個と中性子 143 個を持っている。

④ 同位元素 (アイソトープ)

原子核に含まれる陽子の数は同じであるが、中性子の数の違うもの。従って原子番号が同じで質量数の違うもの。例えば水素(陽子1個)には中性子が0のものと、1のものと、2のものがあって、それぞれ水素、重水素、三重水素(あるいはトリチウム)と呼ばれており、質量数はそれぞれ1、2、3となる。原子番号(陽子の数)が同じだから化学的性質は全く同じであるが、物理的性質は幾分違っている。同位元素を表す一般的な方法はその質量をつけて呼ぶ。例えば、ウランー235, ウランー238, コバルト-58, コバルト-60。これらを元素記号で書くときは 235 U, 238 U, 58 Co, 60 Co などとする。また、同位元素は核種(原子核の種類)とも呼び、放射性のものを放射性同位元素(あるいはラジオアイソトープ、略してR I) とか放射性核種という。

⑤ 原子核反応(略して核反応)

原子核に陽子、中性子、重水素などが作用して別の原子核を作ること。ウラン-235 に中性子が作用して起きる核分裂もこの一種である。

⑥ 原子核壊変(略して核壊変または壊変)

核反応の一種であるが、特に原子核の中からアルファ粒子やベータ粒子を放出して別の原子核に変わることをいう。例えば、ラジウム-226 はアルファ粒子を放出してラドン-222 に壊変(アルファ壊変)し、コバルト-60 はベータ粒子を放出してニッケル-60 に壊変(ベータ壊変)する。壊変はまた崩壊ともいわれるが、この用語は学術語ではない。

⑦ アルファ粒子

陽子2個と中性子2個とからできた粒子、即ち原子番号2のヘリウムの原子核と同じものである。 アルファ粒子の集まりをアルファ線という。原子核から放出されたアルファ粒子はいずれ電子2個と 結合してヘリウムガスとなる。

⑧ ベータ粒子

電子と全く同じものであるが、電子が原子核の外にあるのに対して、ベータ粒子は原子核の中から生じたものである。ベータ粒子の集まりがベータ線である。

⑨ ガンマ線

例えば、コバルト-60 は先に述べたようにベータ粒子を放出してニッケル-60 に変わるが、そのままではまだ余分なエネルギーを持っていて不安定な状態(励起状態という)にある。その余分なエネルギーを電磁波の形で放出して、落ち着いた状態(基底状態)のニッケル-60 となる。この放出された電磁波をガンマ線という。電磁波とは光子のことで、そのエネルギーの強さによって、われわれが見ることができる可視光線、見ることのできない紫外線、エックス線、ガンマ線などがある。

⑩ 放射性物質

アルファ線、ベータ線あるいはガンマ線(これらを放射線という)を放射する能力(放射能)を持つ物質。今、ここに放射性物質があるとする。これを空気中にばらまくと場合によってはそれが人間の体内に取り込まれて、その放射能によって体内で放射線が放射されて、なんらかの影響を与えることになる。これに対して、その放射性物質が容器の中に入れられているとすると、放射性物質は体内に入って行くことはできないが、放射される放射線は物体をつき抜ける(透過)性質を持っているので容器の外へ出て人体に作用することがある。この透過する力は放射線の種類とそのエネルギーで違っている。おおざっぱに言えば、アルファ線は紙1枚つき抜けることができず、ベータ線は数ミリメートルの厚さのアルミニウムの板による遮蔽でその影響を防ぐことができる。エネルギーの強いガンマ線は胸部撮影などに使われるエックス線よりも、さらに物をつき抜ける力が強く、これを遮蔽するには 10 センチメートル前後の厚さのある鉛板あるいは数十センチメートルのコンクリート壁が必要である。そこで、放射性物質から人間を守るためには、放射性物質そのものを容器の中に閉じ込め、さらにそれが出す放射線を遮蔽することが必要である。また、放射性物質から離れたり、放射線を浴びる時間を短くすることで、放射線により被ばくする量を減らすことができる。

① 半減期

放射能(放射線を出す能力)の強さが半分に減るまでの時間。たとえばコバルト-60では約5年、トリチウムでは約12年、セシウム-137では約30年、短い例では窒素-16が約7秒、ヨウ素-131が約8日、これらは物理的半減期と言う。また、生理的に体内から排出される半減期を生物学的半減期と言い、物理的半減期と生物学的半減期を組み合わせたものを有効半減期と言う。コバルト-60の有効半減期は約9日、トリチウムは約12日である。

② エレクトロンボルトまたは電子ボルト(eV)

放射線の持つエネルギーの大きさを表す単位。放射線が物質(人体も含めて)に作用する大きさは、 放射線の持つエネルギーの大きさに比例する。

① ベクレル(Ba)

放射能の強さを表す単位で、1秒間に1個の放射性壊変をする量を言う。

⑭ 照射線量

ガンマ線またはエックス線が空気に与える作用の大きさを表し、従来はレントゲン(R)を使用してきたが、現在、クーロン毎キログラム(C/kg)が用いられている。

⑤ 吸収線量(グレイ:Gy)

物質がどれだけの放射線のエネルギーを吸収したかを表す量である。空気あるいは組織の吸収線量をそれぞれ空気吸収線量、組織吸収線量と言う。空気吸収線量は自由空間中で荷電粒子平衡が成り立つ場合の空気の吸収線量を言う。積算線量や線量率連続測定結果等の空間放射線の測定値は空気吸収線量で表す。

(16) 線量(シーベルト:Sv)

人の放射線防護の目的で被ばくの影響をすべての放射線に対して共通の尺度で評価するために使用する量である。線量を区分すれば以下の通りである。

・内部被ばく:預託実効線量

実効線量

外部被ばくによる実効線量

- 内部被ばく:預託等価線量

等価線量

. 外部被ばく: 1cm 線量当量または70μm線量当量(水晶体)

70μm 線量当量 (皮膚)

吸収線量(D)と等価線量(H)の関係は、放射線加重係数を WRとすれば、次の通りである。

 $H = W_R \times D$

放射線加重係数は以下の値を用いる。

光子、X線および電子(β 粒子) ・・・・ 1 中性子 ・・・・5 \sim 20 α 粒子 ・・・・ 20

実効線量については後述した。

2 測定・監視項目に関するもの

① 空間線量率連続測定

原子力発電所周辺に設置された観測局では、地中や大気中にある放射性核種からのガンマ線や宇宙線を常時測定している。これを線量率の連続測定と呼んでおり、空間放射線レベルの変動を比較的速やかに知ることができる。

線量率は降雨等の自然現象により変動するので、線量率の増加時には降雨の有無やガンマ線のエネルギー情報等を加味して、発電所影響の有無を総合的に判断している。

② 積算線量測定

発電所周辺に配置した積算線量計(TLD、ガラス線量計、電子線量計)を3ヶ月毎に回収し、読み取り装置で測定して積算線量を求める。

これにより、ある期間内のある場所での線量を知ることができる。単位は 92 日間のミリグレイ (mGy/92日)である。

③ 浮遊じん放射能の連続測定

大気中の浮遊じんには天然放射性核種が付着しており、アルファ線放出核種とベータ線放出核種はほぼ平衡状態になっている。これが浮遊じんにおけるバックグランドとしての放射能である。発電所から放射性の微粒子が放出された場合、そのほとんどはベータ線放出核種であるため、浮遊じんの放射能はベータ線放出核種の割合が高くなる。

県の調査では、大気中浮遊じんを常時吸引してろ紙上に集め、浮遊じんが放出するベータ線とアルファ線を吸引と並行して測定するため、発電所に由来する放射能が実時間で識別できるという特徴を持っている。

④ ゲルマニウム検出器による核種分析

一般的に、カリウム(K)やコバルト(Co)等、元素には化学的に同じ動きをするのに質量数の違う 同位体が存在する。カリウムなら³⁸K、⁴⁰K等、コバルトなら⁵⁸Co、⁵⁹Co、⁶⁰Co 等がある。これら同位体 のうち、放射線を出すものを放射性核種とよんでいる。

モニタリングにおける核種分析とは、このような放射性核種の環境試料中での濃度を調べることをいう。ゲルマニウム半導体検出器により、試料に含まれている放射性核種から放出されるガンマ線エネルギーを分析し、放射性核種の種類や濃度を知ることができる。

⑤ トリチウム (三重水素)

原子炉内で生成する放射性核種のひとつで、化学的には水素と同じである。自然界においては、宇宙線により生成する。核実験によっても生じ、それによるものが、現在でも自然界に残っている。

トリチウムは放出する放射線のエネルギーが弱いベータ線であり、また通常の水の形態で存在しており、人体や農産物等に濃縮されることもなく、人体に対する影響は小さい。

3 評価に関するもの

下の項目のうち、①、②、③は日本保健物理学会企画委員会編「法令改正に伴う Q & A」(平成元年3月)から抜粋した。

① 実効線量 (シーベルト:Sv)

放射線が人体に与える影響は、吸収線量(D)が同じであっても受けた放射線の種類、臓器・組織によって変わる。吸収線量に放射線の種類やエネルギーによって決まる係数(放射線加重係数;Wr)をかけて、等価になるよう補正する。これに、臓器・組織毎に決められている放射線に対する感受性を表す係数(組織加重係数;Wr)をかけ、これらの放射線を受けた臓器・組織について加え合わせた量を実効線量(E)という。式で表すと、次のようになる。

$E = \sum W_T \times W_R \times D$

実効線量は人体に対して直接測定することはできないが、この量を用いることで総合的に人体に対する確率的影響をより適切に評価できる。

通常の環境では人は1年間に約0.0024シーベルト(2.4ミリシーベルト: 2.4mSv)の線量を受けている。

② 線量限度

放射線防護のため、国際放射線防護委員会(ICRP)の勧告で決められた被ばく線量の限度。ICRP は、被ばくは限度以内であっても不必要に「許容」されるべきでなく、正当化、最適化が行われた上で、明確に「限度」により管理すべきであると勧告している。

	職業被ばく	公衆被ばく
実効線量限度	決められた5年間で100mSv	年間 1mSv
	かつ任意の1年に20mSvを超える	
	べきでないという付加条件つき	

mSv=ミリシーベルト、シーベルトの千分の一。

この線量限度の考え方として、安全と危険との境界線を示すものでないことを ICRP は 1990 年勧告で注記している。

③ 預託実効線量

放射性物質を体内に摂取した場合、放射性物質が体内からなくなるまで線量を与え続ける(内部被ばく)。ある時点で放射性物質を摂取することによって生ずるリスクは、リスクを考えるべき臓器・組織の総線量によって決まる。このため、放射線防護の目的から、摂取した時点でその後の線量の合計を考慮する。内部被ばくの場合、線量限度と比較されるのは、ある1年間に摂取した放射性物質による預託線量である。ICRP は線量を合計する期間として、成人に対しては50年、子供に対しては被ばく時から70歳までを勧告している。

④ 平常の変動幅

実際のモニタリングにおいては、得られる測定値は種々の要因で一定の値をとらず、ある値の範囲内で変動している。「平常時モニタリングについて(原子力災害対策指針補足参考資料)」では、発電用原子炉施設の通常運転時かつ測定条件等が適切に管理されている場合においては、「核爆発実験等の影響」、「医療・産業用の放射性同位元素等の影響」の原因による測定値の変動を除き、測定値の変動が概ねある一定の幅の中に納まると考えられる。この幅のことを「平常の変動幅」という。適切に管理された条件のもとで有意な測定値が多数得られた場合には、この測定値を統計処理し、過去数年間の測定値の平均値±(3×標準偏差)を平常の変動幅とする。この方法により決定することが困難な場合には、測定開始時からの測定値の最小値から最大値までの範囲を平常の変動幅とすることが示されている。

この報告書では、線量率、積算線量については平均値±(3×標準偏差)を、核種分析、トリチウム分析については最小値から最大値の範囲をそれぞれ平常の変動幅としている。

⑤ 平均値± (3×標準偏差)による評価

線量率、積算線量あるいは環境試料中の放射性核種濃度等、大量の測定データがある試料において、ある値が通常の範囲内にあるか否かを評価するときに用いる手法。大量のデータから平均値 (M) と標準偏差 (σ) を計算し、ある値が $(M-3\sigma)$ から $(M+3\sigma)$ の範囲にあるかどうかチェックする。この範囲をはずれた場合には、その原因を調査する。統計的な変動によりこの範囲をはずれる場合があるので、はずれたからといって直ちにその値が発電所影響を示すわけではない。

なお、標準偏差とは、個々の測定値がデータ集団全体のなかでどのようにばらつくのかを示す目安となる値で、正規分布をするデータ集団では、 $[M\pm3\,\sigma]$ の中に全データの 99.73%が含まれる。データによっては、正規分布ではなく対数正規分布する場合があり、この時の平常の変動幅は、平均値÷(標準偏差) 3 ~平均値×(標準偏差) 3 となる。この場合の平均値は幾何学的平均値であり、標準偏差は幾何学的標準偏差である。

⑥ 濃縮係数

海水中に一般の元素および放射性物質が存在する場合、ともに海産物に濃縮される。濃縮係数は〔海産物中の放射性核種濃度 (Bq/kg)/海水中放射性核種濃度(Bq/le)〕で表され、「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針(原子力安全委員会、平成13年3月改訂)」では以下の値を用いている。

元素	魚類	無脊椎動物	藻 類
Н	1	1	1
Cr	4×10^2	2×10^{3}	2×10^3
Mn	6×10^2	1×10^4	2×10^4
Fe	3×10^3	2×10^4	5×10^4
Со	1×10^2	1×10^3	1×10^3
Sr	1	6	10
I	10	50	4×10^3
Cs	30	20	20

⑦ ICRP(International Commission on Radiological Protection)=国際放射線防護委員会

放射線防護の基本はこの ICRP によって国際的視野で考察され、また絶えず検討されている。ICRP の見解は世界的に権威あるものと認められ、各国の放射線防護に関する基準や勧告は殆どすべてこれ に基づいている。我が国でも、関係法令はすべて、ICRP の勧告、報告の精神と数値を原則的に受入れて制定されている。

4 単位に関すること

(1) 放射線関係単位一覧

物象の 状態の量	計量単位 (略字)	単位の定義	補助計量 単位(略字)	補助計量 単位の定義
放射能	壊変毎秒 (dps) ベクレル (Bq)	壊変毎秒またはベクレルは、 放射性核種の壊変数が1秒に つき1であるときの放射能を いう。	壊変毎分 (dpm)	壊変毎分は、放射性核種 の壊変数が1分につき1 であるときの放射能をい う。
	(2 4)		キュリー (Ci)	キュリーは壊変毎秒また はベクレルの370億倍をい う。
中性子 放出率	中性子毎秒 (n/s)	中性子毎秒は、中性子が1秒 につき1個の割合で放出され る中性子放出率をいう	中性子毎分 (n/m)	中性子毎分は、中性子が 1分につき1個の割合で 放出される中性子放出率 をいう。
照射線量	クーロン毎 キログラム (C/kg)	クーロン毎キログラムは、エックス線またはガンマ線の照射により空気1キログラムにつき放出された電離性微粒子が、空気中においてそれぞれ1クーロンの電気量を有する正および負のイオン群を生じさせる照射線量をいう。	レントゲン (R)	レントゲンは、クーロン 毎キログラムの1万分の 2.58をいう。
吸収線量	グレイ (Gy)	グレイは、電離放射線の照射 により物質1キログラムにつ き1ジュールのエネルギーが 与えられるときの吸収線量を いう。	ラド (rad)	ラドは、グレイの100分の 1をいう。

(2) 接頭数詞〔単位の前につけてその大きさを表しやすくするためのもの〕

記号と	単位に乗	表記例	記号と	単位に乗	表記例
名称	じる倍数	衣記例	名称	じる倍数	衣配例
Е	10 1 8		d	10^{-1}	
エキサ			デシ	(十分の一)	
Р	10 1 5		С	10-2	
ペタ			センチ	(百分の一)	
Т	10 1 2		m	10-3	mSv (ミリシーヘールト) =10 ⁻³ Sv
テラ	(一兆)		ミリ	(千分の一)	mBq (ミリベクレル) =10 ⁻³ Bq
G	10 ⁹	GBq (ギガベクレル) =10 ⁹ Bq	μ	10^{-6}	μ Gy (マイクログ・レイ) $=10^{-6}$ Gy
ギガ	(十億)		マイクロ	(百万分の一)	μ Bq (マイクロヘ゛クレル) =10 ⁻⁶ Bq
M	10 ⁶	MBq (メガベクレル) = 10 ⁶ Bq	n	10-9	$nGy (f/f) V() = 10^{-9} Gy$
メガ	(百万)	MeV(メカ゛エレクトロンホ゛ルト)	ナノ	(十億分の一)	
		$=10^{6} \text{ eV}$			
k	10 ³	keV(キロエレクトロンホ`ルト)	р	10^{-1} ²	
キロ	(千)	$=10^{3} \text{ eV}$	ピコ	(一兆分の一)	
h	10^{2}		f	10^{-15}	
ヘクト	(百)		フェムト		
da	10		a	10 ⁻¹⁸	
デカ	(十)		アト		

付録2 I CRP刊行物 (2020年1月現在)

_	付録2 ICRP刊行物 (2020年1月現在)						
番号	表 題	年	番号	表 題	年		
1*	国際放射線防護委員会勧告(1958年9/9 採択)	1958	30*	作業者に協放射性核種の摂取の限度(Part1~4)	1979		
2*	体内放射線の許容線量に関する専門委員会Ⅱの	1959		Part1,3 絶版	~88		
	報告		31	吸入した放射性核種の生物学的な諸効果	1980		
3*	エネルギ- 3MeVキマの X 線なが密封線源がの β 線なび	1960	32*	作業者によるラドン娘核種の吸入の限度	1981		
	y 線に対抗防護に関する専門委員会 Ⅲ の報告		33*	医学において使用される体外線源からの電離放射線	絶版		
4*	3MeVを必電磁放射線は以電子、中性子が水陽子に	1964		に対する防護			
	対する防護に関する専門委員会IVの報告		34*	X線診断における患者の防護	1982		
5*	病院および医学研究施設における放射性物質の	1965	35*	作業者の放射線防護のためのモニタリングの一般	1982		
	取扱いと廃棄に関抗専門委員会Vの報告			原則			
6*	国際放射線防護委員会勧告	1964	36*	科学の授業における電離放射線に対する防護	絶版		
7*	放射性物質の取扱いに関連する環境モニタリン	1966	37*	放射線防護の最適化における費用-便益分析	1983		
	グの諸原則に関する専門委員会報告		38	放射性核種の崩壊:放出放射線のエネルギーと強度	1983		
8*	放射線はる危険度の評価に関する専門委員会報告	1966	39*	自然放射線源に対する公衆の被曝を制限するため	1984		
9*	国際放射線防護委員会勧告(1965年9/17採択)	1966		の諸原則			
10*	職業被曝による体内汚染からの身体組織への線	1968	40*	大規模放射線事故の際の公衆の防護:計画のため	1984		
	量の評価に関する専門委員会4の報告			の原則			
10A*	反復取り込みまたは長期の取り込みに由来する	1971	41*	電離放射線の非確率的影響	1984		
	体内汚染の算定に関する専門委員会4の報告		42	ICRPが使用しているおもな概念の量の用語解説	1984		
11	骨における組織の放射線感受性に関するレビュー	1968	43*	公衆の放射線防護のためのモニタリングの諸原則	1985		
12*	作業者の放射線防護のためのモニタリングの一	1969	44*	放射線治療における患者の防護	1985		
	般原則		45*	統一された害の指標を作成するための定量的根拠	1985		
13*	18才までの生徒に対しての学校は防放射線防護	1970	46*	放射性固体廃棄物処分に関する放射線防護の諸	1985		
14	放射線感受性と線量の空間分布	1969		原則			
15*	体外線源からの電離放射線に対する防護	1970	47	鉱山における作業者の放射線防護	1986		
16	X線診断における患者の防護	1970	48	プルトニウムと関連元素の代謝	1986		
17*	放射性核種を用いた検査における患者の防護	1971	49	胚および胎児の脳への照射の発育上の影響	1986		
18	突然変異源に関連した高LET 放射線のRBE	1972	50	ラドン 娘核種の屋内での曝露による肺ガンのリスク	1987		
19	プルトニウムとアクチニド 類の化合物の新陳代謝	1972	51*	体外放射線に対する防護のためのデータ	1987		
20	成人におけるアルカリ土類金属の新陳代謝	1973	52*	核医学における患者の防護	1987		
21*	体外線源からの電離放射線に対する防護のデータ	絶版	53	放射性薬剤からの患者の放射線線量	1987		
	ーICRP Publ.15の補遺ー		54*	作業者による放射性核種の摂取に関する個人モニタ	1988		
22*	"線量は容易に達成できるかぎり低く保つべき	1973		リング:立案と解釈			
	である"という委員会勧告の意味合いについて		55*	放射線防護における最適化と意志決定	1989		
23	標準人についての作業グループの報告	1975	56	放射性核種の摂取による公衆の構成員の年齢依存	1989		
24	ウラニウム鉱山とその他の鉱山における放射線	1977		線量 (Part 1)			
	の防護		57	医療および歯科医療における作業者の放射線防護	1989		
25*	病院および医学研究施設における非密封放射性	絶版	58	確定的影響に対するRBE	1989		
	核種の取扱い、貯蔵、使用および廃棄処分		59	皮膚における線量制限の生物学的基礎			
26*	国際放射線防護委員会勧告(1977年1/17採択)	絶版	60*	国際放射線防護委員会勧告(1990年11月採択)	1991		
27*	「害の指標」をつくるときの諸問題	1977	61	1990年勧告に基づく作業者の放射性核種の摂取に関	1991		
28*	作業者の緊急被曝と事故被曝に対処するための	1978		する年限度			
	諸原則と一般的手順		62	医学生物学的研究における放射線防護	1993		
29*	放射性核種の環境へ放出:人に対抗線量の算定	絶版					

^{*}は日本アイソトープ協会より訳版のあるもの

付録2 つづき

_	付録2 つづき						
番号	表題	年	番号	表題	年		
63*	放射線緊急時における公衆の防護のための介入	1993	92*	生物効果比(RBE)、線量係数(Q)及び放射線荷重係	2005		
	に関する原則			数(w _R)			
64*	潜在被ばくの防護: 概念的枠組み	1994	93*	ディジタルラジオロジーにおける患者線量の管理	2007		
65*	家庭と職場におけるラドンー222 に対する防護	絶版	94*	非密封放射性核種による治療を受けた患者の解放	2007		
66	放射線防護のための人呼吸系モデル	1994	95	Doses to Infans from Ingestion of	2005		
67	放射性核種の摂取による公衆の構成員の年齢依	1993		Radionuclides in Mother's Milk			
	存線量 (Part 2)		96*	放射線攻撃時の被ばくに対する公衆の防護	2005		
68*	作業者による放射性核種の摂取についての線量	1996	97*	高線量率(HDR)小線源治療事故の予防	2005		
	係数		98*	永久挿入線源による前立腺がん小線源治療の放射線	2006		
69	放射性核種の摂取による公衆の構成員の年齢依	1995		安全			
	存線量 (Part 3:経口摂取に関する線量係数)		99*	放射線関連がんリスクの低線量への外挿	2007		
70	放射線防護のための解剖学および生理学の基礎	1995	100	Human Alimentary Tract Model for Radiological	2007		
	データ: 骨格			Protection			
71	放射性核種の摂取による公衆の構成員の年齢依	1995	101*	公衆の防護を目的とした代表的個人の線量評価/	2009		
	存線量 (Part 4:経口摂取に関する線量係数)			放射線防護の最適化:プロセスの拡大			
72	放射性核種の摂取による公衆の構成員の年齢依	1996	102	Managing Patient Dose in Multi-Detector	2007		
	存線量 (Part 5:経口摂取に関する線量係数)			Computed Tomography (MDCT)			
73*	医学における放射線の防護と安全	1997	103*	国際放射線防護委員会の2007年勧告	2009		
74*	外部放射線に対する放射線防護に用いるための	1998	104*	放射線防護の管理方策の適用範囲	2008		
	換算係数		105*	医学における放射線防護	2008		
75*	作業者の放射線防護に対する一般原則	1998	106	Radiation Dose to Patients from	2009		
76*	潜在被ばくの防護:選ばれた放射線源への適用	1998		Radiopharmaceuticals			
77*	放射性廃棄物の処分に対する放射線防護の方策	1998	107	Nuclear Decay Data for Dosimetric Calculations	2009		
78*	作業者の内部被ばくの個人モニタリング	2001	108*	環境防護ー標準動物および標準植物の概念と使用ー	2017		
79	Genetic Susceptibility to Cancer	1999	109*	緊急時被ばく状況における人々の防護のための委員	2009		
80	Radiation Dose to Patients from	2000		会勧告の適用			
	Radiopharmaceuticals		110	Adult Reference Computational Phantoms	2009		
81*	長寿命放射性固体廃棄物の処分に適用する放射	2000	111*	原子力事故または放射線緊急事態後の長期汚染地域	2012		
	線防護勧告			に居住する人々の防護に対する委員会勧告の適用			
82*	長期放射線被ばく状況における公衆の防護	2002	112*	新しい外部照射放射線治療技術による事故被ばく	2013		
83*	多因子性疾患のリスク推定	2004		の予防			
84*	妊娠と医療放射線	2002	113*	放射線診断およびIVRにおける放射線防護教育と訓練	2014		
85*	IVRにおける放射線障害の回避	2003	114	Environmental Protection: Transfer Parameters	2012		
86*	放射線治療患者に対する事故被ばくの予防	2004		for Reference Animals and Plants			
87*	CTによる患者の線量管理	2004	115*	ラドンと子孫核種による肺がんのリスク/ラドンに	2017		
88	Doses to the Embryo and Fetus from Intakes	2002		関するICRP声明			
	of Radionuclides by the Mother		116*	外部被ばくに対する放射線防護量のための換算係数	2015		
89	Basic Anatomical and Physiological Data	2002	117*	画像診断部門以外で行われるX線透視ガイド下手技	2017		
	for use in Radiological Protection			における放射線防護			
90	Biological Effects after Prenatal	2003	118*	組織反応に関するICRP声明/正常な組織・臓器にお	2017		
	Irradiation(Emgryo and Fetus)			ける放射線の早期影響と晩発影響一放射線防護の視			
91*	ヒト以外の生物種に対する電離放射線のインパ	2005		点から見た組織反応のしきい線量—			
	クト評価の枠組み						
	> □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	l					

^{*}は日本アイソトープ協会より訳版のあるもの

付録4 つづき

付録				I	, 1
番号	表題	年	番号	表題	年
119	Compendium of Dose Coefficients based on	2012	139	Occupational Radiological Protection in	2018
	ICRP Publication 60		1.40	Interventional Procedures	0010
120*	心臓病学における放射線防護	2017	140	Radiological protection in therapy with	2019
121	Radiological Protection in Paediatric	2013	141	radiopharmaceuticals Occupational Intakes of Radionuclides:	2019
	Diagnostic and Interventional Radiology		141	Part 4	2013
122*	長寿命放射性固体廃棄物の地層処分における放	2017	142	Radiological protection from naturally	2019
	射線防護			occurring radioactive material (NORM) in	
123	Assessment of Radiation Exposure of	2013		industrial processes	
	Astronauts in Space				
124	Protection of the Environment under	2014			
	Different Exposure Situations				
125	Radiological Protection in Security	2014			
	Screening				
126	Radiological Protection against Radon	2014			
	Exposure				
127	Radiological Protection in Ion Beam	2014			
	Radiotherapy				
128	Radiation Dose to Patients from	2015			
	Radiopharmaceuticals: A Compendium of				
	Current Information Related to Frequently				
	Used Substances				
129	Radiological Protection in Cone Beam	2015			
	Computed Tomography (CBCT)				
130	Occupational Intakes of Radionuclides:	2015			
	Part 1				
131	Stem Cell Biology with Respect to	2015			
	Carcinogenesis Aspects of Radiological				
	Protection				
132	Radiological Protection from Cosmic	2016			
	Radiation in Aviation				
133	The ICRP Computational Framework for	2016			
	Internal Dose Assessment for Reference				
	Adults: Specific Absorbed Fractions	0675			
134	Occupational Intakes of Radionuclides:	2016			
105	Part 2	0015			
135	Diagnostic Reference Levels in Medical	2017			
136	Imaging Dose Coefficients for Non-human Biota	2017			
100	Environmentally Exposed to Radiation	2011			
137	Occupational Intakes of Radionuclides:	2017			
	Part 3				
138	Ethical Foundations of the System of	2018			
	Radiological Protection				
		1		i .	1

*は日本アイソトープ協会より訳版のあるもの

(会の名称)

第1条 本会議は、福井県環境放射能測定技術会議と称する。

(目的)

第2条 本会議は、福井県の関係機関ならびに原子力施設設置者が県内の施設周辺で実施する環境放射線モニタリングについて技術的に検討し、環境放射能の状況を常時確認することを目的とする。

(所掌事務)

- 第3条 本会議は前条の目的を達成するため、次の事項を行う。
- 1 原子力施設の平常運転時における環境放射線モニタリング項目の調整
- 2 放射能測定の方法の検討および調査
- 3 環境放射線モニタリングの結果の評価
- 4 報告書の作成ならびに福井県原子力環境安全管理協議会への提出
- 5 その他環境放射線モニタリングに関する技術的事項

(構成)

第4条 本会議は次の機関の専門技術者をもって構成する。

福井県安全環境部原子力安全対策課 日本原子力発電株式会社

福井県原子力環境監視センター

関西電力株式会社

福井県水産試験場

国立研究開発法人日本原子力研究開発機構

なお、オブザーバーとして、県内の原子力規制事務所上席放射線防災専門官の 出席を得る。また、必要に応じて専門機関の意見を求めることができる。

(議長および事務局)

第5条 本会議の議長は、福井県原子力環境監視センター所長をもってあてる。 本会議の事務局を、議長の属する機関に置く。

(会議の開催)

第6条 本会議は、四半期ごとに定例会議を、また構成員が必要を認めた場合はその都 度会議を開催する。

(定例会議以外の会議)

第7条 本会議には、四半期ごとの定例会議以外に、必要に応じ、小委員会、幹事会、 作業部会を置くことができる。 (報告書の作成)

第8条 本会議は、年度開始に先立ち調査計画書を、また環境放射線モニタリングの結果に関し、四半期および年度ごとに報告書を作成する。

(規程の改廃)

第9条 この規程は構成員の同意を得て改廃することができる。

(その他)

第 10 条 この規程に定めるもののほか、会議の運営に関して必要な事項は議長が会議 に諮って定める。

附則

- この規程は、昭和44年2月12日から施行する。 附則
- この規程は、昭和48年8月2日から施行する。 附則
- この規程は、平成7年5月31日から施行する。 附則
- この規程は、平成10年7月1日から施行する。 附則
- この規程は、平成 10 年 10 月 1 日から施行する。 附則
- この規程は、平成15年4月1日から施行する。 附則
- この規程は、平成17年4月1日から施行する。 附則
- この規程は、平成 17 年 10 月 1 日から施行する。 附則
- この規程は、平成 24 年 5 月 28 日から施行する。 附則
- この規程は、平成 25 年 4 月 1 日から施行する。 附則
- この規程は、平成27年4月1日から施行する。 附則
- この規程は、平成29年8月3日から施行する。

原子力発電所周辺の環境放射能調査 2020年度(令和2年度)計画書 [FERC第52巻 6号]

福井県環境放射能測定技術会議

Fukui Environmental Radiation Monitoring Council (F E R C)

2020年3月 発行

発行所 福井県環境放射能測定技術会議事務局 敦賀市吉河37-1 (〒914-0024) 福井県原子力環境監視センター Tm. (0770)25-6110

発行責任者 村田 健